Texas Commission on Environmental Quality Remediation Division Correspondence Identification Form

			SITE &	PROGRAM	AREA IDENT	IFICATION					
	SITE	LOCATI	ON		REMEDIATION DIVISION PROGRAM AND FACILITY						
						IDENT	TIFICATION				
Site Name:	Former City	of Houston	n Incinerat	or Site	Is This Site Bein	ng Managed Uno	der A State Lead Contract?				
					Yes	🗸 No					
Address 1:	0 North Vela	asco Street	(Ball Stree	t Right-of-	Program	VOLUNTARY	CLEANUP PROGRAM	•			
	•		and 9, We	isenbach SS,	Area:						
	Harris Cour	nty)									
Address 2:					Mail Code:	MC-221					
City: Hous	ston		State:	Texas	Is This A New Site To This Program Area?						
					Yes	▼ No					
Zip Code:	77003	County:	Harris	-	VCP No.: 3308						
TCEQ Regio	n: Reg	ion 12 - Hou	ston		Leave This Fi	ield Blank	Leave This Field Blank				

	DOCUMENT(S) IDENTIFICATION						
PHASE OF REMEDIATION	DOCUMENT NAME						
1. ASSESSMENT	DRINKING WATER SURVEY REPORT						
2.	▼						
3.	▼						
4.	· · · · · · · · · · · · · · · · · · ·						
5.							

		CONTACT IN	FORMATION			
	DECDO			OMED		
		NSIBLE PARTY	APPLICANT/CUST	UMER		
Name:	Christa Stoneham					
Company:	Houston Land Bank	Phone Number:	281-655-4600	Fax	Number:	
Address 1:	1214 Elgin Street	City: Houst	on State:	Texas	Zip Code:	77004
Address 2:		Email Address:	cstoneham@houston	nlandbank.o	rg	
	ENVIRONMEN	TAL CONSULTA	NT/REPORT PREP	ARER/AG	ENT	
Name:	Tory C. Balderrama, P.G.					
Company:	SKA Consulting, L.P.	Phone Number:	713-266-6056	Fax	Number:	713-266-0996
Address 1:	1888 Stebbins Drive, Suite 100	City: Houst	on State:	Texas	Zip Code:	77043
Address 2:		Email Address:	tory.balderrama@s	kaconsulting	g.com	
-						

	TCEQ INTERNAL USE ONLY												
Document No.	TCEQ Database Term	Document No.	TCEQ Database Term										
1.	DRINKING WATER SURVEY RPT	4.											
2.		5.											
3.													

February 29, 2024

Texas Commission on Environmental Quality (TCEQ) VCP-CA Section Remediation Division Attn: Mr. John M. Vilas, P.G. 12100 Park 35 Circle, MC-221 Austin, Texas 78753

Re: Drinking Water Survey Report Former City of Houston Velasco Incinerator Site 0 North Velasco Street (Ball Street Right-of-Way and Blocks 6, 7, 8, and 9, Weisenbach SS, Harris County) Houston, Harris County, Texas 77003 VCP No. 3308

Dear Mr. Vilas,

SKA Consulting, L.P. (SKA), on behalf of Houston Land Bank (Voluntary Cleanup Program [VCP] Applicant A), presents the attached Drinking Water Survey Report for the above-referenced subject property located in Houston, Harris County, Texas.

If you have any questions or comments regarding the attached document, please do not hesitate to contact the undersigned at (713) 266-6056 or by email at brian.weaver@skaconsulting.com.

Sincerely,

SKA CONSULTING, L.P.

Brian T. Weaver, P.G. Executive Vice President & Partner

Attachment: Drinking Water Survey Report

cc: Ms. Christa Stoneham, Houston Land Bank Ms. LaTosha Okoiron, Houston Land Bank Ms. Danielle Getsinger, P.G., Community Lattice TCEQ Region 12, Houston ATTACHMENT:

DRINKING WATER SURVEY REPORT

Environmental Engineering and Consulting Excellence Since 2001

Drinking Water Survey Report Former City of Houston Velasco Incinerator Site 0 North Velasco Street (Ball Street Right-of-Way and Blocks 6, 7, 8, and 9, Weisenbach SS, Harris County) Houston, Harris County, Texas 77003 VCP No. 3308

Prepared for:

Houston Land Bank 1214 Elgin Street Houston, Texas 77004

February 29, 2024

SKA Project No. 12022-0001

SKA Consulting, L.P. 1888 Stebbins Drive, Suite 100 Houston, Texas 77043

P: 713.266.6056 | F: 713.266.0996

skaconsulting.com

Texas Engineering Firm F-005009 • Texas Geoscience Firm 50011 • Texas Asbestos Consultancy 100525

DRINKING WATER SURVEY REPORT

FORMER CITY OF HOUSTON VELASCO INCINERATOR SITE 0 NORTH VELASCO STREET (BALL STREET RIGHT-OF-WAY AND BLOCKS 6, 7, 8, AND 9, WEISENBACH SS, HARRIS COUNTY) HOUSTON, HARRIS COUNTY, TEXAS 77003 VCP NO. 3308

SKA PROJECT NO. 12022-0001

Prepared for:

HOUSTON LAND BANK 1214 ELGIN STREET HOUSTON, TEXAS 77004

Submitted by:

SKA CONSULTING, L.P. 1888 STEBBINS DRIVE, SUITE 100 HOUSTON, TEXAS 77043

Prepared by:

Signature

SENIOR GEOLOGIST & PROJECT MANAGER

Reviewed by:

Signature

BRIAN T. WEAVER, P.G. EXECUTIVE VICE PRESIDENT & PARTNER

STAFF ENVIRONMENTAL SCIENTIST

TORY C. BALDERRAMA, P.G.

COURTNEY R. SIMS

FEBRUARY 29, 2024

TEXAS REGISTERED ENGINEERING FIRM NO. F-005009 TEXAS REGISTERED GEOSCIENCE FIRM NO. 50011 TEXAS ASBESTOS CONSULTANCY 100525

Professional Signatures and Seals

Report Information:

Drinking Water Survey Report Former City of Houston Incinerator Site 0 North Velasco Street (Ball Street Right-of-Way and Blocks 6, 7, 8, and 9, Weisenbach SS, Harris County) Houston, Harris County, Texas 77003 VCP No. 0038 SKA Project No. 12022-0001 SKA Report No. 12022-0001.R02 Date: February 29, 2024

Firm Identification:

SKA Consulting, L.P. 1888 Stebbins Drive, Suite 100 Houston, Texas 77043 713-266-6056 Texas Geoscience Firm - TBPG License No: 50011 Texas Engineering Firm - TBPE License No: F-005009

State of Texas Professional Geoscientist:

Brian T. Weaver, P.G.	274	January 31, 2025
Professional Geoscientist	Geoscientist License number	Expiration date
Barry Dann	2 29 2024	
Signature	Date	
(713) 266-6056	(713) 266-0996	brian.weaver@skaconsulting.com
Telephone number	FAX number	E-mail
Seals, as applicable:	BRIAN T. WEAVER BRIAN T. WEAVER GEOLOGY 274 SOLUCENSED SCU	4
	2/29/202	

Ref: 22 Texas Administrative Code (TAC) §851.156

Drinking Water Survey Report Transmittal Form (Remediation Division, TCEQ)

Remediation Division Program:	Transmittal D	ate:					
Voluntary Cleanup Program (VCP)	February 29, 2	2024					
Program ID No.:	Document Da	te: February	/ 29, 2024				
VCP No. 3308							
Regulated Entity Reference No.:							
RN111832523							
Customer Reference No.: CN606056364							
Facility Name:	Submittal						
Former City of Houston Velasco	🛛 With Initial R	elease Docur	nentation				
Incinerator Site	Expedited TCEQ Request						
	Non-Expedite	ed TCEQ Red	quest				
Physical address of property where groundwater	assessment was	conducted.					
0 North Velasco Street							
Houston, Texas 77003		I		1			
Have you contacted the applicable groundwater or district? (This is a required step—it must be comp		🗌 Yes		🖾 NA			
NA only if there is no groundwater conservation d							
area.)							
Has the extent of groundwater contamination bee residential health-based values for ingestion?	n defined to	🗌 Yes	🛛 No				
If the extent of groundwater contamination has be		🗌 Yes	🗌 No	🖾 NA			
residential health-based values for ingestion, are drinking water wells located within the groundwate plume?							
If the extent of groundwater contamination has no	t been defined	⊠ Yes	□ No				
to residential health-based values for ingestion, a	re any private						
drinking water wells located within a 0.25-mile rac known extent of groundwater contamination?							

Table of Contents_

Exec	utive Summary	1
	Groundwater Contamination	
	1.1 Investigation Status	1
	1.2 Groundwater COC Concentrations	2
2.0	Public Water Supply Availability	3
	2.1 Public Water Supply	3
	2.2 Private Water Supply	3
3.0	Groundwater Production Zones	6
	3.1 Area Hydrogeology	6
	3.2 Site Hydrogeology	7
	3.3 Water Well Construction Details	8
4.0	Affected or Potentially Affected Water Wells1	0

Figures

Figure 1 – Site Plan

Figure 2 – Water Well Location Map

<u>Tables</u>

Table 1 – Summary of Groundwater Analytical Results

Table 2 – Water Well Information

Attachments

Attachment 1 – Laboratory Certificates of Analysis and Chain of Custody Documentation

Attachment 2 – Groundwater Monitoring Well Construction Details

Attachment 3 – Water Well Report

Attachment 4 – Telephone/Interview Reports

Executive Summary_

SKA Consulting, L.P. (SKA) was retained by Houston Land Bank (Voluntary Cleanup Program [VCP] Applicant A and property owner) to prepare a Drinking Water Survey Report (DWSR) for the Former City of Houston Velasco Incinerator Site (subject property) at 0 North Velasco Street in Houston, Harris County, Texas. This report was prepared utilizing Texas Commission on Environmental Quality (TCEQ) Regulatory Guidance (RG)-428, *Preparation of a Drinking Water Survey Report*, revised January 2010.

The subject property comprises approximately 4.7 acres of largely vacant land located west of North Velasco Street on the south side of Buffalo Bayou, about a mile east of downtown Houston. The City of Houston formerly operated the subject property as a municipal incinerator facility from the 1930s through the late 1960s. The original incinerator was located on the northern portion of the subject property before being replaced by a second incinerator on the southern portion. All on-site buildings were removed by 1998 except for the two original incinerator stacks and a 100-foot by 250-foot concrete building foundation associated with the second incinerator. The site is heavily covered in native grasses and trees and is bounded on all sides by chain-link fencing. The northern approximately two-thirds of the subject property is elevated between about 15 to 30 feet above the surrounding surface grade.

Groundwater assessment activities were conducted on the subject property by other environmental consultants in 2006 and 2008 and included the installation of nine monitoring wells (COHMW01, MW-1, MW-1A, MW-1D, and MW-2 to MW-6) across the subject property. However, monitoring well MW-1 did not produce groundwater and was plugged, abandoned, and replaced by monitoring well MW-1A. Further, no known groundwater monitoring data is available for monitoring well COHMW01. A groundwater monitoring event for monitoring wells MW-1A and MW-2 through MW-6 was performed by others in 2006, while groundwater monitoring events for monitoring well MW-1D were performed by others in 2008 and 2021. SKA has not conducted any groundwater assessment or monitoring activities on the subject property as of the publication date of this report.

The uppermost groundwater bearing unit (GWBU, or shallow groundwater) beneath the subject property is generally encountered at approximately 34 to 36 feet below ground surface (ft-bgs) at natural grade. The previous environmental consultants did not determine the shallow groundwater flow direction beneath the subject property. However, based on SKA's reviews of publicly available reports for nearby TCEQ-regulated facilities and the proximity of Buffalo Bayou to the subject property (180 to 300-feet), the shallow groundwater flow direction beneath the subject property is to the north or northeast, toward Buffalo Bayou.

The subject property has been enrolled in the TCEQ VCP under No. 3308 since October 26, 2023, related to affected soil and groundwater identified by other environmental consultants at the subject property.

Chemical of concern (COC) concentrations in the uppermost groundwater-bearing unit (GWBU) were compared to the their applicable residential regulatory standards, specifically their TCEQ Texas Risk Reduction Program (TRRP) Tier 1 Residential groundwater-ingestion (^{GW}GW_{Ing}) Protective Concentration Levels (PCLs), except for methyl tert-butyl ether (MTBE), copper, silver, and zinc which were compared to their U.S. Environmental Protection Agency (EPA) Secondary

Maximum Contaminant Levels (MCLs). Except for groundwater monitoring results for monitoring well MW-1D, the only available groundwater analytical data is from 2006 (about 18 years old). Based on this most recent available groundwater monitoring results collected by others, only concentrations of trichloroethene (TCE), bis(2-ethylhexyl)phthalate, and lead exceed their applicable residential regulatory standards. The current concentrations of these COCs, or others if any, is unknown.

SKA conducted a records survey to determine the locations, current use, and construction details of water wells located within a half-mile radius of the known extent of groundwater contamination. All properties located within a half-mile radius of the subject property are serviced by the City of Houston (COH) public water supply system and, therefore, have access to the public water supply. In addition, SKA personnel conducted a 500-foot radius visual field survey on February 23, 2024, to visually identify private drinking water wells located within 500 feet of the known extent of groundwater contamination. The findings and conclusions of the records and field surveys are discussed below.

- No registered water wells are located within the known extent of groundwater contamination on the subject property.
- Eight registered water wells were identified within a half-mile radius of the known extent of groundwater contamination, but two were reported as plugged.
- Four registered water wells are located within a quarter-mile radius of the known extent of groundwater contamination. However, available information indicates all four of these registered water wells have likely been abandoned or destroyed (see *Section 3.3*).
- The remaining two water wells located within a half-mile radius of the subject property are located hydrogeologically upgradient (south) of the subject property. Further, these wells are screened deeper than the affected uppermost GWBU and are, therefore, not producing from this GWBU.
- No water wells were observed on or within 500 feet of the subject property during the field survey.

Based on the findings of this DWSR, SKA concludes no drinking water wells are affected or potentially affected by the known extent of groundwater contamination at the subject property.

1.0 Groundwater Contamination_

This section discusses the status of environmental investigations conducted on the subject property and the extent of chemicals of concern (COCs) in groundwater at the subject property.

1.1 Investigation Status

Groundwater assessment activities were conducted on the subject property in 2006 and 2008 by other environmental consultants: Terracon Consultants, Inc. (Terracon) and Envirotest, Ltd. (Envirotest). These consultants installed 8 monitoring wells (MW-1, MW-1A, MW-1D, and MW-2 to MW-6) across the subject property. However, monitoring well MW-1 did not produce groundwater and was plugged, abandoned, and replaced by monitoring well MW-1A. Further, a ninth monitoring well (COHMW01) was also installed on the subject property in 1998 by an unknown party, and the monitoring well remains on the subject property. No known groundwater monitoring data is available for monitoring well COHMW01. Groundwater monitoring events for the remaining 7 monitoring wells (MW-1A, MW-1D, and MW-2 through MW-6) were variously performed in 2006, 2008, and 2021 by Terracon, Envirotest, and InControl Technologies (InControl), respectively. SKA Consulting, L.P. (SKA) has not conducted any groundwater assessment or monitoring activities on the subject property as of the publication date of this report.

The subject property is enrolled in the Texas Commission on Environmental Quality (TCEQ) Voluntary Cleanup Program (VCP) related to affected soil and groundwater identified by other environmental consultants at the subject property. The TCEQ accepted the subject property into the VCP under No. 3308 on October 26, 2023.

The previous environmental consultants did not determine the shallow groundwater flow direction beneath the subject property. Nevertheless, SKA reviewed publicly available regulatory reports for nearby regulated facilities, including the south-adjacent Lead Products Company VCP site (No. 334), the east-adjacent Former Genesis Worldwide Lease Corrective Action (CorrAct) site (No. T2465), and the Navigation Business Park VCP site (VCP No. 2748) about 250 feet east. The shallow groundwater flow direction at these sites was generally reported to the north or northeast, toward Buffalo Bayou. Based on the proximity of these sites and Buffalo Bayou to the subject property (180 to 300-feet), the shallow groundwater flow direction at the subject property is to the north or northeast, toward Buffalo Bayou.

The locations of the permanent monitoring wells installed by others on the subject property are depicted in *Figure 1*. Boring logs for all permanent monitoring wells completed on the subject property by others are included in *Attachment 2*. SKA notes for the TCEQ the boring logs were not individually sealed by a State of Texas licensed professional geoscientist (P.G.) or qualified professional engineer (P.E.); however, the boring logs for monitoring wells MW-1A and MW-2 through MW-6 were contained within a bound report prepared for others that was properly signed and sealed by a P.E., and the boring log for monitoring well MW-1D was also contained within a bound report prepared for others that was properly signed and sealed by a P.G. Therefore, all boring logs were properly placed under seal. In addition, professional geoscience work submitted to the TCEQ was not required to be signed and sealed by a P.G. or P.E. until October 1, 2004, and monitoring well COHMW01 was installed before then in 1998. Regardless, SKA obtained copies of these original signed and sealed geoscientific reports

prepared by others as historical environmental studies for reference, but SKA disclaims any professional responsibility or liability for these boring logs or reports as they were not prepared under SKA's Professional Geoscientist's direct supervision.

1.2 Groundwater COC Concentrations

COC concentrations in the uppermost groundwater-bearing unit (GWBU) were generally compared to their TCEQ Texas Risk Reduction Program (TRRP) Tier 1 Residential groundwater-ingestion (^{GW}GW_{Ing}) Protective Concentration Levels (PCLs). However, U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels (MCLs) for methyl tert-butyl ether (MTBE), copper, silver, and zinc are lower than their TRRP Tier 1 Residential ^{GW}GW_{Ing} PCLs and were utilized as the regulatory standards for MTBE, copper, silver, and zinc.

Groundwater samples collected from the on-site monitoring wells by others in 2006 (MW-1A and MW-2 through MW-6) and 2021 (MW-1D) were variously analyzed for the following COCs: volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and/or metals (i.e., antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and/or zinc). Except for monitoring well MW-1D, the only available groundwater analytical data is from 2006 (about 18 years old). Based on this most recent available groundwater monitoring results collected by others, only concentrations of trichloroethene (TCE), bis(2-ethylhexyl)phthalate, and lead exceed their applicable regulatory standards. The current concentrations of these COCs, or others if any, is unknown.

The known extent of groundwater contamination is depicted in *Figure 1*, and a summary of the groundwater analytical results is presented in *Table 1*. Laboratory certificates of analysis and chain of custody documentation for the groundwater monitoring events performed by others between 2006 and 2021 are presented in *Attachment 1*.

2.0 Public Water Supply Availability_

This section discusses the availability of public and private water supplies within a half-mile radius of the *known extent of groundwater contamination* on the subject property.

2.1 Public Water Supply

The subject property is located within the City of Houston (COH) city limits. According to the COH's Public Works and Engineering website, the subject and surrounding properties are serviced by the COH public water supply system. The COH currently draws approximately 86% of its drinking water from surface water sourced from the Trinity River through Lake Livingston and from the San Jacinto River through Lake Conroe and Lake Houston. The remaining 14% of the COH's drinking water is drawn from permitted wells that pump water from the Evangeline and Chicot Aquifers. The uppermost GWBU is not a known source of usable water in the area, and properties within a 500-foot radius of the subject property are connected to the COH public water supply.

2.2 Private Water Supply

The following subsections discuss the Records Survey and visual Field Survey performed by SKA to determine if any private drinking water wells located within a half-mile of the subject property are affected or potentially affected by the known extent of groundwater contamination on the subject property.

Records Survey

SKA obtained records surveys from ERIS regarding registered water wells within a half-mile radius of the known extent of groundwater contamination. ERIS reported no water wells within the known extent of groundwater contamination, four water wells within a quarter-mile of the known extent of groundwater contamination, and four water wells between a quarter- and half-mile radius of the known extent of groundwater contamination.

Detailed discussions regarding the available information for the identified water wells are included in **Section 3.3**. The water well information obtained during the records survey is summarized in **Table 2**, and a Water Well Map is included in **Figure 2**. In addition, the ERIS water well records report is included in **Attachment 3**.

Field Survey

SKA personnel conducted a visual field survey on February 23, 2024 to identify drinking water wells within 500 feet of the known extent of groundwater contamination at the subject property. The field survey consisted of a walking/driving tour of accessible areas on the subject property and surrounding public rights-of-way within the search area. No water wells were observed by SKA on or within 500 feet of the known extent of groundwater contamination during the field survey.

During the field survey, SKA also attempted to locate the four water wells (Map ID Nos. 1, 2A, 2B, and 2C, see *Figure 2*) reportedly located within a quarter-mile radius of the known extent of groundwater contamination. The observations made by SKA while searching for these water wells are discussed below.

 Two water wells (Map ID Nos. 1 and 2B) were identified by ERIS about 730 and 370 feet southwest, respectively, of the known extent of groundwater contamination. These two water wells are reportedly located at 709 North Velasco Street, an active TCEQ VCP site (Lead Products Company, VCP No. 334) currently occupied by Allpro Manufacturing. The results are further described below:

The first well reported on this VCP property, Map ID No. 1, was plotted within a grasscovered field south of the onsite buildings. Based on our onsite inspection, SKA observed an apparent groundwater monitoring well with a metal stick-up and protective bollards located near the relative location of Map ID No. 1. SKA did not observe any water well, well pump, or other features indicative of a water well at this location or anywhere else on the property. Moreover, SKA observed numerous groundwater monitoring wells constructed identical to this feature observed at this location (metal stick-up with protective bollards) all across this active TCEQ VCP site.

SKA contacted Ms. Dawn Denham, P.G., the Project Manager with Weston Solutions, Inc. (Weston) working on this active TCEQ VCP site (Lead Products Company, VCP No. 334) for the VCP Applicant and Property Owner (Mr. Carter Simons). SKA contacted Ms. Denham to inquire about the monitoring wells installed on this property. A response from Ms. Denham on February 27, 2024, included a signed and sealed Sample Location and Potentiometric Map for Lead Products Company. Based on this, the feature observed by SKA during our onsite inspection near the relative location of Map ID No. 1 is indeed groundwater monitoring well (LP)MW01.

The second well reported on this VCP property, Map ID 2B, was plotted within or adjacent to an on-site building. SKA inspected both the interior and exterior portions of this on-site building and others; however, no evidence of a water well, well pump, or other features indicative of a water well was observed by SKA at this location or anywhere else on the property. However, SKA did observe a City of Houston water meter adjacently southeast of this on-site building along North Velasco Street right-of-way (ROW).

On February 23, 2024, SKA conducted a telephone interview with the President and Property Owner of Lead Products Company, Mr. Carter Simons (this adjacent active TCEQ VCP site, VCP No. 334). Mr. Simons stated that he had no knowledge of a water well in the grass-covered field (Map ID No. 1), and that the water well reported as being located within a facility building (Map ID No. 2B) was decommissioned and capped during VCP activities at the site and has not been used in at least 25 years. Additionally, an employee of the current occupant (Allpro Manufacturing, Inc.), Ms. Wendy Ostera, was interviewed by SKA during the field survey. Ms. Ostera stated that the property is serviced by the City of Houston municipal water system and has no knowledge of any water wells on the property. Interviews of these owner and occupant representatives are included in *Attachment 4*.

Based on the results of the field survey and interviews with the Property Owner and occupant representatives, these two reported water wells have either been destroyed or abandoned. Therefore, these two reported water wells do not exist. Consequently, these reported water wells are not affected or potentially affected by the known extent of groundwater contamination at the subject property.

- One water well (Map ID No. 2A) reported by ERIS is located approximately 615 feet south of the known extent of groundwater contamination at 3201 Navigation Boulevard. No evidence of this water well was found during the field survey. Therefore, this water well was likely destroyed or abandoned.
- One water well (Map ID No. 2C) is reportedly located approximately 440 feet southeast of the known extent of groundwater contamination at 3401 Navigation Boulevard. This property was redeveloped with the present-day commercial distribution warehouse in 1980 according to Harris Central Appraisal District (HCAD) real property information. SKA searched for this water well around the exterior and inside select portions of the interior of the commercial distribution warehouse; however, no evidence of this water well was found. As such, this water well was likely destroyed or abandoned.
- SKA personnel observed underground water line features such as water meters, manway lids, and fire hydrants during the 500-foot survey of surrounding properties. These features indicate the presence of underground water supply lines used to supply potable water to the subject property area from a municipal water supply source (i.e., City of Houston).

A door-to-door survey was not required because the COH supplies drinking water to all properties within a half-mile of the known extent of groundwater contamination at the subject property.

3.0 Groundwater Production Zones

This section discusses the groundwater production zones for the water wells identified by SKA in the records survey and field survey within a half-mile of the *known extent of groundwater contamination* on the subject property.

3.1 Area Hydrogeology

According to *Aquifers of Texas*, published by the Texas Water Development Board (TWDB), the aquifer in the subject property vicinity is the Gulf Coast Aquifer. This aquifer consists of interbedded clays, silts, sands, and gravels that are hydraulically connected to form a large, leaky artesian aquifer system. Hydrostratigraphic units within the Gulf Coast Aquifer include, from oldest to youngest: the Catahoula Confining System, the Jasper Aquifer, the Burkeville Confining System, the Evangeline Aquifer, and the Chicot Aquifer. The Chicot Aquifer, or upper component of the Gulf Coast Aquifer System, consists of the Lissie, Willis, Bentley, Montgomery, and Beaumont Formations and overlying alluvial deposits. Regional groundwater flow is generally toward the southeast.

The Chicot Aquifer has been subdivided into the Upper and Lower Chicot in the area. This differentiation is based upon a predominance of clay in the upper portions of the Chicot, which exhibits potentiometric levels different than the mostly sandy strata below. The lower sandy unit of the Chicot has been frequently tapped for groundwater of good quality and supply in Harris County. Inter-bedded sands and clays of the Lower Chicot have been mapped at depth. The base of the Chicot Aquifer in the Houston area has been mapped as occurring at depths ranging from approximately 450 to 750 ft-bgs.

The Evangeline Aquifer contains interbedded sand and clay layers of nearly equal proportion. Individual sand layers typically range in thickness from 10 to 50 feet, yielding abundant supplies of good quality groundwater throughout most of the Houston area. Clay layers within the Evangeline reach thicknesses of 50 feet. These layers, however, are limited in horizontal extent and are thus not expected to prohibit communication between inter-bedded sand layers. The base of the Evangeline Aquifer in the Houston area has been mapped as occurring at depths ranging from approximately 1,600 to 2,700 ft-bgs.

The primary mechanism of recharge into the Chicot and Evangeline Aquifers is infiltration of precipitation in areas where the aquifers' more permeable strata outcrop at the surface. Recharge to the Chicot Aquifer predominantly occurs north of Houston in the Montgomery County area, where the Willis Sand and the Lissie Formation are exposed at the ground surface. In areas where Beaumont clay is exposed at the surface, little or no recharge to the Chicot Aquifer occurs. Recharge to the Evangeline Aquifer occurs about 40 to 60 miles north of the Houston area in the northern portion of Montgomery County, in areas where the Fleming Formation and remnants of the Willis Sand outcrop.

3.2 Site Hydrogeology

The northern approximately two-thirds of the subject property is elevated between about 15 to 30 feet above the surrounding surface grade from apparent incinerator ash historically deposited on the subject property. As such, the geologic and hydrogeologic units encountered vary depending on whether the incinerator ash was present in the sampling location.

The soils encountered on the subject property during the installation of permanent monitoring wells by others at apparent natural grade (i.e., outside of the elevated area of ash deposits) consisted of the following geologic and hydrogeologic units:

- <u>Natural Grade Fill:</u> Fill material consisting of primarily ash (generally dark brown to black in appearance) mixed with varying amounts of silt, sand, and glass from the ground surface to 10 ft-bgs in the one monitoring well in which it was encountered (MW-3).
- <u>Natural Grade Unit 1:</u> Primarily silty sand (SM) with layers of low plasticity clay with sand or silt (CL) or medium plasticity clay (CH) from the ground surface to depths ranging from 33 to 34 ft-bgs.
- <u>Natural Grade Unit 2 (Uppermost GWBU)</u>: Mostly silty sand (SM) from the bottom of Unit 1 to the maximum explored depths ranging from 40 to 45 ft-bgs. Shallow groundwater was initially encountered at depths ranging from 34 to 36 ft-bgs.

The soils encountered on the subject property during the installation of permanent monitoring wells by others in the elevated area of ash deposits consisted of the following geologic and hydrogeologic units:

- <u>Elevated Area Fill:</u> Fill material consisting of primarily ash (generally dark brown to black in appearance) mixed with varying amounts of silt, sand, gravel, and glass or metal fragments from the ground surface to between 31 and 35 ft-bgs.
- <u>Elevated Area Unit 1:</u> Layers of low to high plasticity clay (CL/CH), sandy or clayey silt (ML), and sand (SP) from the bottom of the overlying fill material to depths ranging from 42.5 to 48 ft-bgs.
- <u>Elevated Area Unit 2 (Uppermost GWBU)</u>: Generally silty sand (SM) or sand (SP), except for monitoring well MW-5 that was reportedly saturated in a non-plastic, silty clay (CL), encountered from the bottom of Unit 1 to maximum depths ranging from 49 to 55 ft-bgs. Shallow groundwater was initially encountered at depths ranging from 43 to 48 ftbgs.
- <u>Elevated Area Unit 3:</u> High plasticity clay (CH) from the bottom of Unit 2 (uppermost GWBU) to a depth of 50 ft-bgs in the two monitoring wells in which it was encountered (MW-1D and MW-5). This unit serves as a lower-confining unit for the uppermost GWBU.

• <u>Elevated Area Unit 4 (Second GWBU)</u>: Saturated silty clay (CL) to clayey silt (ML) from the bottom of Unit 3 to a maximum explored depth of 60 ft-bgs in the one monitoring well in which it was encountered (MW-1D). Groundwater within this unit was encountered at 50 ft-bgs.

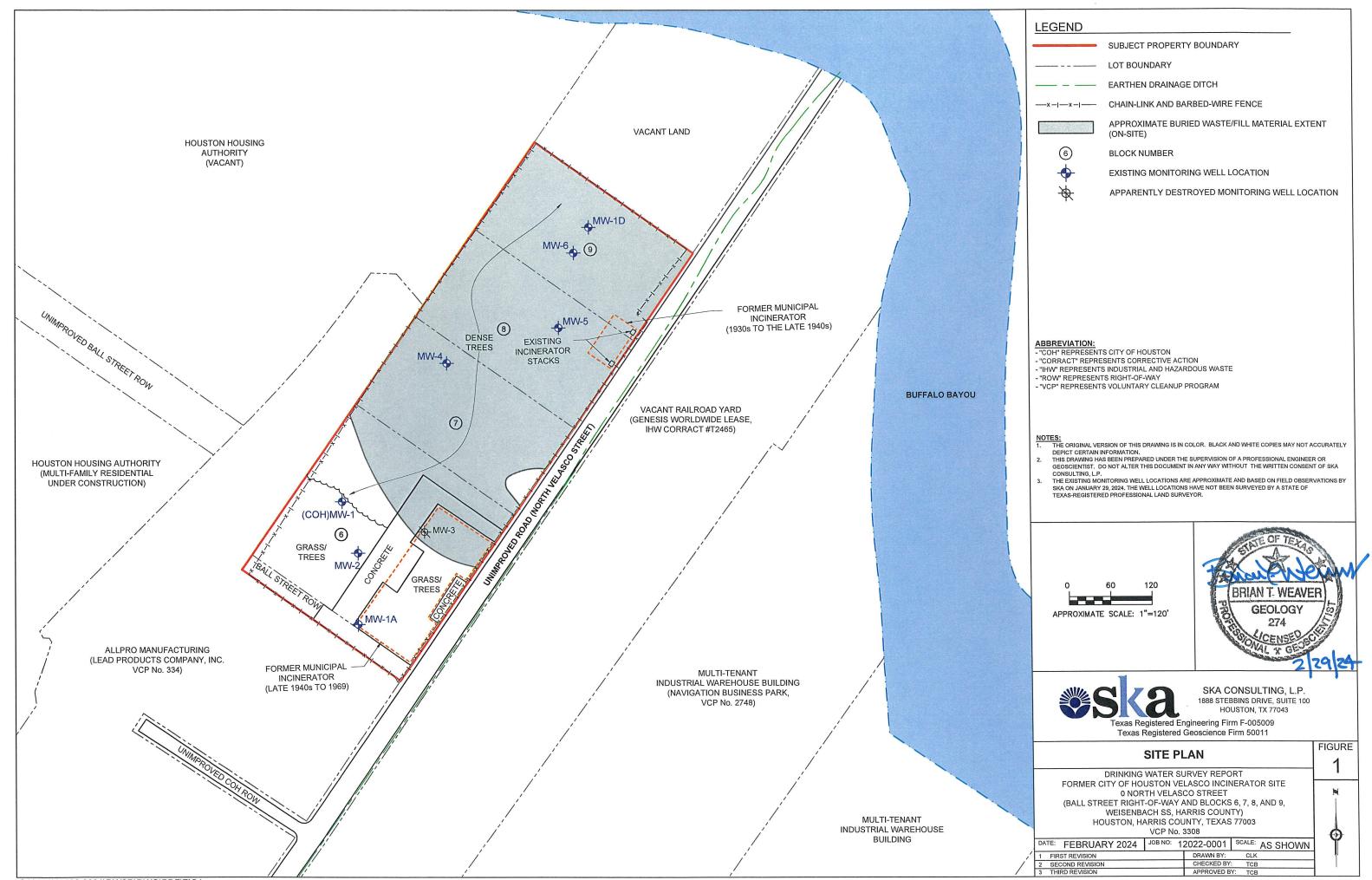
Boring logs for all permanent monitoring wells completed by others on the subject property are included in *Attachment 2*.

3.3 Water Well Construction Details

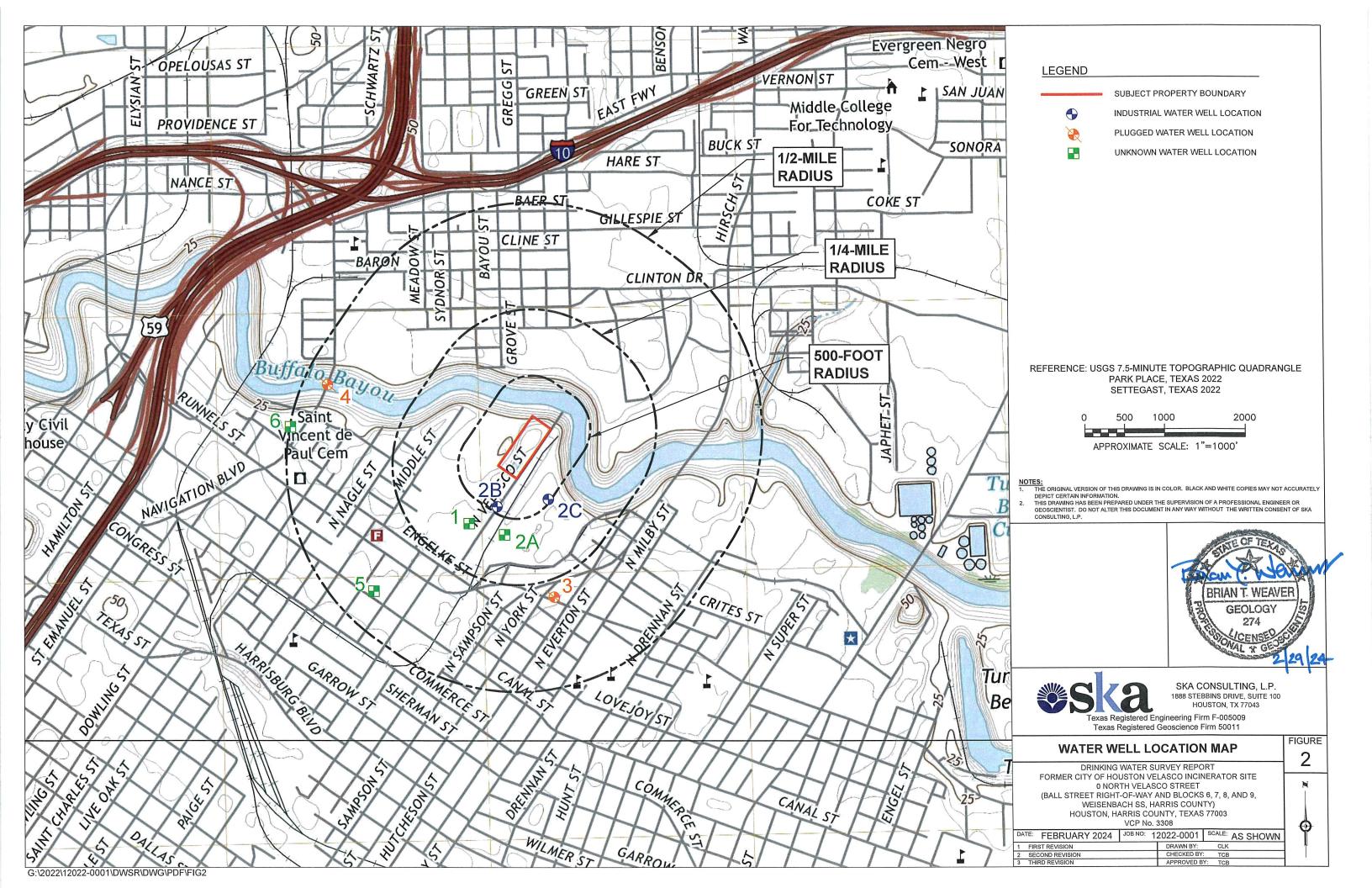
Based on the records survey results, four water wells are reportedly located within a quartermile radius of the known extent of groundwater contamination on the subject property. The available details for these water wells are discussed below.

- Two water wells (Map ID Nos. 1 and 2B, *Figure 2*) were identified by ERIS about 730 and 370 feet southwest, respectively, of the known extent of groundwater contamination at 709 North Velasco Street (an active TCEQ VCP site [Lead Products Company], VCP No. 334). One water well was reported as of unknown use (Map ID No. 1), and the other water well was reported for industrial use (Map ID No. 2B). Both wells are screened deeper (at or greater than 233 ft-bgs) than the affected uppermost GWBU and are, therefore, not producing from this GWBU. SKA did not observe these wells during our recent onsite field survey. Based on the findings of the field survey and interviews with the Property Owner and occupant representative (see *Section 2.2*), these water wells have likely been abandoned or destroyed and are not affected or potentially affected by the known extent of groundwater contamination at the subject property.
- One water well of unknown use (Map ID No. 2A, *Figure 2*) was identified by ERIS about 615 feet south of the known extent of groundwater contamination at 3201 Navigation Boulevard. The well is screened much deeper (1,536 to 1,616 ft-bgs) than the affected uppermost GWBU and is, therefore, not producing from this GWBU. SKA did not observe this well during the field survey. Further, the site on which this water well is located is a TCEQ CorrAct site (Former Genesis Worldwide Lease, CorrAct No. T2465). A publicly-available DWSR prepared for this site indicates this water well was not identified at the site. As such, this water well has likely been abandoned or destroyed and is not affected or potentially affected by the known extent of groundwater contamination at the subject property.
- One industrial water well (Map ID No. 2C, *Figure 2*) was identified by ERIS about 440 feet southeast of the known extend of groundwater contamination at 3401 Navigation Boulevard. The well is screen deeper (339 to 420 ft-bgs) than the affected uppermost GWBU and is, therefore, not producing from this GWBU. SKA did not observe this well during the field survey. Further, the site on which this water well is located is a TCEQ VCP site (Navigation Business Park, VCP No. 2748). A publicly-available Affected Property Assessment Report (APAR) prepared for this site indicates this water well was not identified at the site. As such, this water well has likely been abandoned or destroyed and is not affected or potentially affected by the known extent of groundwater contamination at the subject property.

The remaining water wells located within a half-mile radius of the subject property that are not reported as plugged (Map ID Nos. 5 and 6) are located hydrogeologically upgradient of the subject property. Further, these wells are screened deeper than the affected uppermost GWBU and are, therefore, not producing from this GWBU. As such, neither of these water wells are affected or potentially affected by the known extent of groundwater contamination at the subject property.


4.0 Affected or Potentially Affected Water Wells_

Based on the results of a records survey, four registered water wells are located within a quarter-mile radius of the known extent of groundwater contamination. However, available information indicates all four of these wells have likely been abandoned or destroyed. No water wells were observed on or within 500 feet of the subject property during the field survey. Based upon the information gathered from the available water well records and the field survey, <u>SKA concludes no drinking water wells are affected or potentially affected by the documented groundwater impacts at the subject property.</u>



Figures_____

LEOLIND	
	SUBJECT PROPERTY BOUNDARY
	LOT BOUNDARY
	EARTHEN DRAINAGE DITCH
x-I	CHAIN-LINK AND BARBED-WIRE FENCE
	APPROXIMATE BURIED WASTE/FILL MATERIAL EXTENT (ON-SITE)
6	BLOCK NUMBER
-	EXISTING MONITORING WELL LOCATION
æ	APPARENTLY DESTROYED MONITORING WELL LOCATION

Tables_____

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - VOCs, TPH, SVOCs, & PCBs DRINKING WATER SURVEY REPORT FORMER CITY OF HOUSTON VELASCO INCINERATOR SITE **0 NORTH VELASCO STREET** (BALL STREET RIGHT-OF-WAY AND BLOCKS 6, 7, 8, AND 9, WEISENBACH SS, HARRIS COUNTY) HOUSTON, HARRIS COUNTY, TEXAS 77003 VCP NO. 3308

		l l	OLATILE ORGANIC	COMPOUNDS (VOCs	6)	тс	TAL PETROLEUM H	YDROCARBONS (TR	PH)	SEMI-VOLATIL	E ORGANIC COMPO	UNDS (SVOCs)	PCBs
Sample Name	Sample Date	Acetone Method 8260	Method 8260	0958 0,1,2,2-trifluoroethan	Trichloroethene (TCE)	ی و- TX Method 1005	8 <mark>7ع، 255.</mark> TX Method 1005	ې ۶ <mark>۶، 85. ۲X Method 1005</mark>	1001 Dotpat TPH 5001 (Ge-C ₃₅)	Benzo(a)pyrene	Bis(2-ethylhexyl)phthalate	Diethyl phthalate	Polychlorinated Biphenyls (PCBs)
	0,	mg/L	mg/L	mg/L	mg/L MONITO	mg/L DRING WELLS (TERF	mg/L RACON CONSULTAN	mg/L ITS, INC.)	mg/L	mg/L	mg/L	mg/L	mg/L
MW-1A	9/19/2006	<0.0025	<0.00050	-	0.0052	<0.20	<0.20	<0.20	<0.20	<0.00050	0.089	<0.00050	-
N#N/ 0	9/19/2006	<0.0025	<0.00050	-	<0.00070	<0.20	<0.20	<0.20	<0.20	<0.00050	0.34	<0.00050	-
MW-2	9/19/2006 (Dup-1)	<0.0025	<0.00050	-	<0.00070	<0.20	<0.20	<0.20	<0.20	<0.00050	0.22	<0.00050	-
MW-3	9/19/2006	<0.0025	<0.00050	-	<0.00070	<0.20	<0.20	<0.20	<0.20	<0.00050	0.0029 J	<0.00050	-
MW-4	9/19/2006	<0.0025	<0.00050	-	<0.00070	<0.20	<0.20	<0.20	<0.20	<0.00050	0.16	0.0058 J	-
MW-5	9/20/2006	<0.0025	<0.00050	-	<0.00070	<0.20	<0.20	<0.20	<0.20	<0.00050	0.0046 J	<0.00050	-
MW-6	9/20/2006	<0.0025	<0.00050	-	<0.00070	<0.20	<0.20	<0.20	<0.20	<0.00050	<0.00050	<0.00050	-
						MONITORING WELL	(ENVIROTEST, LTD.	.)					
MW-1D	10/30/2008	0.019 J	0.0013	0.0019	0.00042 J	<0.98	12.0	1.8	13.0	0.000029 J	-	-	ND
	5/26/2021	-	-	-	-	<0.20	<0.20	<0.20	<0.20	-	-	-	-
						REGULATOR	Y STANDARDS						
	RRP Tier 1 ^{GW} GW _{Ing} PCLs	22	0.070	730	0.0050	0.98	0.98	0.98		0.00020	0.0060	20	0.00050

Notes:

"-" indicates not analyzed.

"--" indicates not established

"mg/L" represents milligrams per liter.

"VCP" represents Voluntary Cleanup Program.

"TCEQ" represents Texas Commission on Environmental Quality.

"TRRP" represents Texas Risk Reduction Program.

"<" indicates the analyte was not detected at or above the specified laboratory Sample Detection Limit (SDL) or Minimum Detection Limit (MDL).

"ND" indicates none of the specified constituents were detected at or above their laboratory SDLs. Concentrations in bold were detected at or above the laboratory SDL or MDL.

"J" indicates the detected concentration is an estimated value above the laboratory SDL or MDL but below the Method Quantitation Limit (MQL). Only VOC and SVOC analytes detected at or above the laboratory SDL, MDL, or SQL in at least one groundwater sample are shown on this table. Concentrations highlighted yellow exceed their critical TCEQ TRRP Tier 1 Residential groundwater-ingestion (GWGWIng) Protective Concentration Levels (PCLs). TCEQ TRRP Tier 1 Residential Groundwater PCLs (30 Texas Administrative Code [TAC] Chapter 350, Table 3: Tier 1 Groundwater PCLs - Residential and Commercial/Industrial, dated May 10, 2023).

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - TPH SPECIATION DRINKING WATER SURVEY REPORT FORMER CITY OF HOUSTON VELASCO INCINERATOR SITE **0 NORTH VELASCO STREET** (BALL STREET RIGHT-OF-WAY AND BLOCKS 6, 7, 8, AND 9, WEISENBACH SS, HARRIS COUNTY) HOUSTON, HARRIS COUNTY, TEXAS 77003 VCP NO. 3308

							TOTAL PETROLEU	M HYDROCARBONS	(TPH) SPECIATION					
	Sample Date				ALIPHATICS		AROMATICS							
iple Name		8	C6 to C8	C8 to C10	C10 to C12	C12 to C16	C16 to C21	C21 to C35	C7 to C8	C8 to C10	C10 to C12	C12 to C16	C16 to C21	C21 to C35
Sam		TX Method 1006 mg/L												
						MONITORI	NG WELL (ENVIRO)	TEST, LTD.)						
MW-1D	10/30/2008	<0.61	<0.61	<0.61	<0.61	<0.61	<0.61	4.0	<0.61	<0.61	<0.61	<0.61	<0.61	4.0
				·		REG	ULATORY STANDA	RDS						
	RRP Tier 1 ^{GW} GW _{ing} PCLs	1.5	1.5	2.4	2.4	2.4	49	49	2.4	0.98	0.98	0.98	0.73	0.73

Notes:

"mg/L" represents milligrams per liter.

"VCP" represents Voluntary Cleanup Program.

"TCEQ" represents Texas Commission on Environmental Quality.

"TRRP" represents Texas Risk Reduction Program.

"<" indicates the analyte was not detected at or above the specified laboratory Minimum Detection Limit (MDL).

Concentrations in bold were detected at or above the laboratory MDL. Concentrations highlighted yellow exceed their critical TCEQ TRRP Tier 1 Residential groundwater-ingestion (^{GW}GW_{Ing}) Protective Concentration Levels (PCLs). TCEQ TRRP Tier 1 Residential Groundwater PCLs (30 Texas Administrative Code [TAC] Chapter 350, Table 3: Tier 1 Groundwater PCLs - Residential and Commercial/Industrial, dated May 10, 2023).

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - METALS DRINKING WATER SURVEY REPORT FORMER CITY OF HOUSTON VELASCO INCINERATOR SITE **0 NORTH VELASCO STREET** (BALL STREET RIGHT-OF-WAY AND BLOCKS 6, 7, 8, AND 9, WEISENBACH SS, HARRIS COUNTY) HOUSTON, HARRIS COUNTY, TEXAS 77003 VCP NO. 3308

								METALS						
e Name	e Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
Sample	ample	Method 6010B or 6020A	Method 6020	Method 6020	Method 6010B or 6020A	Method 6020	Method 6020	Method 6010B or 6020A	Method 6020	Method 7470A	Method 6010B or 6020A	Method 6020	Method 6020	Method 6010B or 6020A
Ň	Sa	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		_			MONIT	ORING WELLS (TERRACON CON	ISULTANTS, INC.)					-
MW-1A	9/19/2006	-	0.00253 J	0.0608	-	<0.00015	0.00387	-	0.00287 J	0.0000690 J	-	<0.0017	<0.00020	-
MW-2	9/19/2006	-	<0.0018	0.0957	-	<0.00015	0.00166 J	-	0.00472 J	0.0000490 J	-	<0.0017	<0.00020	-
10100-2	9/19/2006 (Dup)	-	0.00190 J	0.0937	-	<0.00015	0.00182 J	-	0.00452 J	<0.000042	-	<0.0017	<0.00020	-
MW-3	9/19/2006	-	0.00204 J	0.0705	-	<0.00015	0.00129 J	-	0.0146	<0.000042	-	<0.0017	<0.00020	-
MW-4	9/19/2006	-	0.00198 J	0.0641	-	<0.00015	0.00297	-	0.00537	<0.000042	-	<0.0017	<0.00020	-
MW-5	9/20/2006	-	0.00341 J	0.134	-	<0.00015	0.0181	-	0.0411	<0.000042	-	0.00343 J	<0.00020	-
MW-6	9/20/2006	-	0.00401 J	0.0610	-	<0.00015	0.00526	-	0.0139	<0.000042	-	0.00170 J	<0.00020	-
						MONITORING W	VELL (ENVIROTE	ST, LTD.)						
	10/30/2008	0.0016	0.010	0.38	0.0023	0.0056	0.075	0.045	0.10	0.00017 J	0.048	<0.0065	<0.0032	0.18
MW-1D	5/26/2021	-	0.000493 J	0.0644	-	<0.000200	0.00405	-	<0.000600	<0.0000300	-	0.0172	<0.000200	-
	·				·	REGULA	TORY STANDAR	RDS			·		·	
TCEQ TR Residential ^G	RRP Tier 1 ^{3W} GW _{Ing} PCLs	0.0060	0.010	2.0	0.0040	0.0050	0.10	*1.0	0.015	0.0020	0.49	0.050	*0.10	*5.0

Notes:

"-" indicates not analyzed.

"mg/L" represents milligrams per liter.

"VCP" represents Voluntary Cleanup Program.

"TCEQ" represents Texas Commission on Environmental Quality.

"TRRP" represents Texas Risk Reduction Program.

"<" indicates the analyte was not detected at or above the specified laboratory Sample Detection Limit (SDL).

"*" indicates use of a USEPA Secondary Maximum Contaminant Level (MCL) as the regulatory standard.

"<" indicates the analyte was not detected at or above the specified laboratory Sample Detection Limit (SDL).

Concentrations in bold were detected at or above the laboratory SDL or SQL.

"J" indicates the detected concentration is an estimated value above the laboratory SDL but below the Method Quantitation Limit (MQL). Concentrations highlighted yellow exceed their critical TCEQ TRRP Tier 1 Residential groundwater-ingestion (^{GW}GW_{Ing}) Protective Concentration Levels (PCLs). TCEQ TRRP Tier 1 Residential Groundwater Protective Concentration Levels (PCLs) (30 Texas Administrative Code [TAC] Chapter 350, Table 3: Tier 1 Groundwater PCLs - Residential and Commercial/Industrial, dated May 10, 2023).

TABLE 2 WATER WELL INFORMATION DRINKING WATER SURVEY REPORT FORMER CITY OF HOUSTON VELASCO INCINERATOR SITE 0 NORTH VELASCO STREET (BALL STREET RIGHT-OF-WAY AND BLOCKS 6, 7, 8, AND 9, WEISENBACH SS, HARRIS COUNTY) HOUSTON, HARRIS COUNTY, TEXAS 77003 VCP NO. 3308

Map ID No.	Well ID	Distance from known extent of groundwater contamination (feet)	Physical Address	Latitude	Longitude	Well Type ^[1]	Well Use ^[2]	Well Status ^[3]	Date of Well Installation	Total Well Depth (feet)	Screen Length (feet)	Screened Interval (feet)	Cemented Interval (feet)	Private Drinking Water Well (Yes/No)	Affected or Potentially Affected (Yes/No)	Current Well Owner Name, Mailing Address, and Phone
1	65-14-762	730 feet southwest	709 North Velasco Street Houston, Texas 77003	29.757501	-95.337778	U	U	U	1953	258	25	233-258	Unknown	Unknown	No	Lead Products Co., Inc. P.O. Box 1341 Houston, Texas 77251
2A	65-14-755	615 feet south	3201 Navigation Boulevard Houston, Texas 77003	29.7572263	-95.336389	U	U	U	1907	1,616	80	1,536-1,616	Unknown	Unknown	No	Southern Pacific Railroad Company 1400 Douglas Street, Stop 1640 Omaha, Nebraska 68179 402-544-5000
2B	65-14-756	370 feet southwest	709 North Velasco Street Houston, Texas 77003	29.758056	-95.336667	N	U	U	1930	619	101	235-611	Unknown	No	No	Lead Products Co., Inc. P.O. Box 1341 Houston, Texas 77251
2C	65-14-758	440 feet southeast	3401 Navigation Boulevard Houston, Texas 77003	29.758334	-95.334722	N	U	U	1936	424	68	339-420	Unknown	No	No	SL Project Texas, L.P. 100 Crescent Court, Suite 850 Dallas, Texas 75201
3	65-14-705, HGSD ID 1576	1,490 feet southeast	405 Hutcheson Street Houston, Texas 77003	29.755001	-95.334445	N	U	Ρ	1951	612	Unknown	Unknown	Unknown	No	No	Donald H. Anderson P.O. Box 607 Kemah, Texas 77565
4	HGSD ID 2843	2,370 feet west	South Jensen Drive ROW Houston, Texas 77003	29.762222	-95.343333	U	U	Р	1962	640	Unknown	Unknown	Unknown	No	No	City of Houston P.O. Box 1562 Houston, Texas 77251
5	65-22-2D	2,125 feet southwest	2901 Canal Street Houston, Texas 77003	29.755245	-95.341532	Prv	U	U	1970	186	10	176-186	131-171	Yes	No	CMK Investments, Inc. 2901 Canal Street Houston, Texas 77003
6	65-14-754	2,700 feet west	333 Runnels Street Houston, Texas 77003	29.760834	-95.345000	U	U	U	1923	881	180	150-694	Unknown	Unknown	No	City of Houston P.O. Box 1562 Houston, Texas 77251

Notes:

"VCP" represents Voluntary Cleanup Program.

The water well physical addresses were obtained from the Harris County Appraisal District (HCAD) Parcel Viewer using latitude/longitude coordinates provided by ERIS.

Well Type ^[1] - Private ("Prv"), Industrial ("N"), Unknown ("U")

Well Use^[2] - Drinking Water ("D"), Non-Drinking Water ("N"), Unknown ("U")

Well Status^[3] - Plugged ("P"), Unknown ("U")

Attachment 1_____

Groundwater Laboratory Certificates of Analysis and Chain of Custody Documentation

e-Lab Analytical, Inc.

10450 Stancliff Rd, Suite 210 Houston, Texas 77099-4338 281-530-5656 Fax 281-530-5887

September 27, 2006

Prasad Rajulu Terracon Consulting Engineers & Scientists 11555 Clay Road Suite 100 Houston, TX 77043

Tel: (713) 690-8989 Fax: (713) 690-8787

Re: 92067647/North of Valsco

Work Order : 0609262

Dear Prasad Rajulu,

e-Lab Analytical, Inc. received 7 samples on 9/20/2006 7:56:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by e-Lab Analytical, Inc. and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by e-Lab Analytical, Inc. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 58.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Jeffrey L Croston

Electronically approved by: Odette E, Ellist Jeffrey L Croston Project Manager

Certificate No: T104704231-06-TX

e-Lab Analytical, Inc.

Date: September 27, 2006

CLIENT:	Terracon Consulting Engineers & Scientists	TRRP Laboratory Data
Project:	92067647/North of Valsco	Package Cover Page
Work Order:	0609262	

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation:
- R2 Sample identification cross-reference
- R3 Test reports (analytical data sheets) for each environmental sample that includes:a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including: a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;?
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [NA] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jeffrey L Croston

Jeffrey L Croston Project Manager

			hecklist: Reportable Data								
			LRC Date: 09/27/2006								
Proj	ect N	ame: North of Valsco	Laboratory Job Number: 0609262								
Rev	iewer	Name: Jeff Croston	Prep Batch Number(s): 19910, 19921, 1992	23, 199	33 ai	nd R	4186	6			
# ¹	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵			
R1	OI	CHAIN-OF-CUSTODY (C-O-C)									
		1) Did samples meet the laboratory's standard conditions	of sample acceptability upon receipt?	X							
		2) Were all departures from standard conditions describe		X							
R2	OI	SAMPLE AND QUALITY CONTROL (QC) IDENT			NAME OF T	Stevenson Stevenson		15351124			
N 4		1) Are all field sample ID numbers cross-referenced to the		X	785735.77	ujineto	(aligner)	2010/5109			
		 Are all laboratory ID numbers cross-referenced to the 	$+\frac{\alpha}{x}$								
R3	OI	TEST REPORTS	corresponding QC uttar				distriction distriction				
		1) Were all samples prepared and analyzed within holding	X	2001/03/10	253.059	0121712215	2012215-000				
		 2) Other than those results < MQL, were all other raw values 	X			<u> </u>					
		3) Were calculations checked by a peer or supervisor?									
		4) Were all analyte identifications checked by a peer or supervisor	supervisor?				1				
				$+\hat{\mathbf{x}}$				1			
			 Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? 								
		7) Was % moisture (or solids) reported for all soil and se		-		$\frac{X}{X}$	<u>†</u>	†			
		8) If required for the project, TICs reported?				X	1	\mathbf{f}			
R4	0	SURROGATE RECOVERY DATA			TERNÉ TI	ener e		(Linicia)			
	1) Were surrogates added prior to extraction?	······································	X		2000000						
		 Were surrogate percent recoveries in all samples with 	in the laboratory OC limits?	-	x	┼───		1			
R5	OI	TEST REPORTS/SUMMMARY FORMS FOR BLA	NK SAMPLES	GRAA R			-	122.525			
		1) Were appropriate type(s) of blanks analyzed?		X	1.01010000	0.0000000	000000	2 200201/20204			
				1 x							
		2) Were method blanks taken through the entire analytic	anks analyzed at the appropriate frequency? ethod blanks taken through the entire analytical process, including preparation and, if								
		applicable, cleanup procedures?	ar process, moraling proparation and, it	X							
		4) Were blank concentrations < MQL?		Tx	†	1					
R6	OI	LABORATORY CONTROL SAMPLES (LCS):				<u> </u>					
	1Ŭ.	1) Were all COCs included in the LCS?		X	110307	Colorada)	1.16371553	 370121212 			
		2) Was each LCS taken through the entire analytical prod	cedure including prep and cleanup steps?	X							
		3) Were LCSs analyzed at the required frequency?	······································	T x	<u> </u>	1	1	1			
		4) Were LCS (and LCSD, if applicable) %Rs within the	laboratory OC limits?	TX	1	1	1	1			
		5) Does the detectability data document the laboratory's	capability to detect the COCs at the MDL	X	1			<u> </u>			
		used to calculate the SQLs?									
ĺ		6) Was the LCSD RPD within QC limits?		X		1					
R 7	01	MATRIX SPIKE (MS) AND MATRIX SPIKE DUP	LICATE (MSD) DATA	1221	dinish:		3692F				
	<u>+</u>	1) Were the project/method specified analytes included		X			1				
		2) Were MS/MSD analyzed at the appropriate frequency		X	T	1	1	1			
		3) Were MS (and MSD, if applicable) %Rs within the la			X	1	1	2			
		4) Were MS/MSD RPDs within laboratory QC limits?		X	1		3				
R 8	OI	ANALYTICAL DUPLICATE DATA						3 (1) (3) (3) (3)			
	<u> </u>	1) Were appropriate analytical duplicates analyzed for e	each matrix?	X	1	1					
		2) Were analytical duplicates analyzed at the appropriat		X	1		1				
		3) Were RPDs or relative standard deviations within the		X	1	1	1	1			
R9	01	METHOD QUANTITATION LIMITS (MQLS):	·····	1000	21251						
		1) Are the MQLs for each method analyte listed and incl	luded in the laboratory data package?	X							
		2) Do the MQLs correspond to the concentration of the l		X							
		3) Are unadjusted MQLs included in the laboratory data		X		Γ					
R10	OI	OTHER PROBLEMS/ANOMALIES					त्व दुश्याहरू। स्टेल्ल्ड्स	n Giventi Givenn			
		1) Are all known problems/anomalies/special conditions	noted in this LRC and ER?	X							
		2) Were all necessary corrective actions performed for the	he reported data?	X							
	:	3) If requested, is the justification for elevated SQLs doc		X	1						

Items identified by the letter "R" should be included in the laboratory data package submitted in o the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
 O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;

4 5 NR = Not Reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

		Laboratory Review Chee	cklist: Supporting Data					
Lat	orato	ry Name: e-Lab Analytical, Inc.	C Date: 09/27/2006					
Project Name: North of Valsco Laboratory Job Number: 0609262								
Rev	iewe	r Name: Jeff Croston Pret	Batch Number(s): 19910, 19921, 19923,	199	33 an	d R41	1866	
# ¹	A ² Description					NA ³	NR ⁴	ER# ⁵
<u></u> S1		INITIAL CALIBRATION (ICAL)						
51		1) Were response factors (RFs) and/or relative response factor limits?	rs (RRFs) for each analyte within the QC	X				
		2) Were percent RSDs or correlation coefficient criteria met?		X				1
		3) Was the number of standards recommended in the method	used for all analytes?	Х				T
		4) Were all points generated between the lowest and highest s	standard used to calculate the curve?	Х				
		5) Are ICAL data available for all instruments used?		Х				T
		6) Has the initial calibration curve been verified using an app	ropriate second source standard?	X				T
S2	OI							
	1	1) Was the CCV analyzed at the method-required frequency?		Х				
		2) Were percent differences for each analyte within the method		Х				1
		3) Was the ICAL curve verified for each analyte?		Х				1
		4) Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?		1	x		1
S 3	10	MASS SPECTRAL TUNING:			<u>lessiden</u>	REAL PROPERTY OF		
	†	1) Was the appropriate compound for the method used for tur	vine?	Х	100.000	andant		
	1. ·	2) Were ion abundance data within the method-required QC I		X			1	1
S4	0	INTERNAL STANDARDS (IS):						
<u> </u>	<u> </u>	Were IS area counts and retention times within the method-re	X	-1001-01-0	200000000	0.0000000000	204-XIQCIDIAN	
S5	OI	RAW DATA (NELAC SECTION 1 APPENDIX A GI		 200000		BIGENE		
	101	1) Were the raw data (e.g., chromatograms, spectral data) rev		X		200000000	00000000000	10110110110
		2) Were data associated with manual integrations flagged on		$\frac{\Lambda}{X}$	 			
S6	0	DUAL COLUMN CONFIRMATION						
30	<u>ho</u>	Did dual column confirmation results meet the method-requin		<u></u>		X		<u>S APRICA</u>
67				12022032			-	3
<u>\$7</u>	0	TENTATIVELY IDENTIFIED COMPOUNDS (TICS):	-his at the environmentate sharefue?	<u> Manadala</u>	192533	S NAME		<u>AS USERAT</u>
60		If TICs were requested, were the mass spectra and TIC data s	ubject to appropriate checks?	KOSEDIO	18000000	X	0.0340400000	
<u>58</u>	1	INTERFERENCE CHECK SAMPLE (ICS) RESULTS:		77	0.005	000000000000000000000000000000000000000		
	+	Were percent recoveries within method QC limits?	IN REALAN AT ATLANA	X		deretoriate	a analas Manidak	na salatat
<u>\$9</u>	<u>I</u>	SERIAL DILUTIONS, POST DIGESTION SPIKES,	AND METHOD OF STANDARD				1.22.010433	<u> 1998</u> 00
	1	Were percent differences, recoveries, and the linearity within	the QC limits specified in the method?	X			y with the state	
510	OI	PROFICIENCY TEST REPORTS:	A1 0	3026013				
		Are proficiency testing or inter-laboratory comparison results	s on file?	X		the standard same		
811	OI	METHOD DETECTION LIMIT (MDL) STUDIES			18920			
		1) Was a MDL study performed for each reported analyte?		X	 	ļ		
	<u></u>	2) Is the MDL either adjusted or supported by the analysis of	DCSs?	X				
<u>S12</u>	OI	STANDARDS DOCUMENTATION		Break;				<u> </u>
ļ		Are all standards used in the analyses NIST-traceable or obta		X			-	-
S13	OI	COMPOUND/ANALYTE IDENTIFICATION PROCED			a na sa			<u> 1999</u>
	_	Are the procedures for compound/analyte identification docu		X				_
<u>\$14</u>	OI	DEMONSTRATION OF ANALYST COMPETENCY (D	<u>OC)</u>					
1	1	1) Was DOC conducted consistent with NELAC 5C or ISO/I		X	ļ	ļ	ļ	
	ļ	2) Is documentation of the analyst's competency up-to-date a		X	_	_	L	
S15	OI	VERIFICATION/VALIDATION DOCUMENTATION F		See of				
		Are all the methods used to generate the data documented, when (NELAC 5.10.2 or ISO/IEC 17025 Section 5.4.5)?	verified, and validated, where applicable,	X				
S16	OI	LABORATORY STANDARD OPERATING PROCEDU	RES (SOPS):				1.520403910	
	1	Are laboratory SOPs current and on file for each method perf		X	T	I		

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. 1

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable). NA = Not applicable. 2

3

NR = Not Reviewed. 4

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5

	Laboratory R	eview Checklist: Exception Report				
Laborat	tory Name: e-Lab Analytical, Inc.	LRC Date: 09/27/2006				
Project	Name: North of Valsco	Laboratory Job Number: 0609262				
Review	er Name: Jeff Croston	Prep Batch Number(s): 19910, 19921, 19923, 19933 and R41866				
ER # ¹	DESCRIPTION					
1	TPH TX1005 (all samples) Surrogate recoveries were above the control limits. Recoveries were biased high and all samples were ND, therefore the data was accepted.					
2	Batch 19933 TPH TX1005 (sample MW-1A) MS/MSD recoveries were outside of control limits for all ranges. RPD's within control limits.					
	Batch 19910 Semivolatiles (sample MW-1A) MS recoveries were above the control limits for Bis(2-ethylhexyl)phthalate (223%).					
	Batch R41866 Volatiles (sample MW-1A) MSD recoveries were below the control limits for sec- Butylbenzene (79.5%).					
3	Batch 19910 Semivolatiles (sample MW-1A) MS/MSD RPD recoveries were above the control limits for Several compounds.					

1 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

e-Lab Analytical, Inc.

Date: September 27, 2006

CLIENT:	Terracon Consulting Engineers & Scientists	
Project:	92067647/North of Valsco	Work C
Work Order:	0609262	

Work Order Sample Summary

<u>Lab Samp ID</u>	<u>Client Sample ID</u>	<u>Matrix</u>	<u>Tag Number</u>	Collection Date	Date Received	<u>Hold</u>
0609262-01	MW-1A	Water		9/19/2006 11:20	9/20/2006 07:56	
0609262-02	MW-2	Water		9/19/2006 12:35	9/20/2006 07:56	
0609262-03	MW-3	Water		9/19/2006 14:25	9/20/2006 07:56	
0609262-04	MW-4	Water		9/19/2006 15:35	9/20/2006 07:56	
0609262-05	Dup-1	Water		9/19/2006	9/20/2006 07:56	
0609262-06	Trip Blank 0492	Water		9/19/2006 15:35	9/20/2006 07:56	\checkmark
0609262-07	Trip Blank 0664	Water		9/19/2006 15:35	9/20/2006 07:56	\checkmark

e-Lab Analytical, Inc.

Date: September 27, 2006

CLIENT:	Terracon Consulting Engineers & Scientists
Work Order:	0609262
Project:	92067647/North of Valsco
Lab ID:	0609262-01

Client Sample ID: MW-1A Collection Date: 9/19/2006 11:20:00 AM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TEXAS TPH		Meth	nod: TX1005		Prep: TX	1005PR / 9/22/06	Analyst: JFT
nC6 to nC12	U		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28	U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35	U		0.20	0.50	mg/L	1	9/26/2006
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorobiphenyl	158	s		70-130	%REC	1	9/26/2006
Sun: Trifluoromethyl benzene	129			70-130	%REC	1	9/26/2006
MERCURY, TOTAL		Meth	nod: SW7470		Prep: SV	v7470 / 9/21/06	Analyst: JCJ
Mercury	0.0000690	J	0.000042	0.000200	mg/L	1	9/22/2006
ICP METALS, TOTAL		Meth	nod: SW6020		Prep: SV	V3010A / 9/22/06	Analyst: ALR
Arsenic	0.00253	J	0.0018	0.00500	mg/L	1	9/22/2006
Barium	0.0608		0.00060	0.00500	mg/L	1	9/22/2006
Cadmium	ប		0.00015	0.00100	mg/L	1	9/22/2006
Chromium	0.00387		0.00050	0.00200	mg/L	1	9/22/2006
Lead	0.00287	J	0.00020	0.00500	mg/L	1	9/22/2006
Selenium	U		0.0017	0.00500	mg/L	1	9/22/2006
Silver	U		0.00020	0.00500	mg/L	1	9/22/2006
TCL SEMIVOLATILE ORGANICS		Metl	nod: SW8270		Prep: SV	V3510 / 9/21/06	Analyst: RSS
1,2,4-Trichlorobenzene	U		0.00050	0.010	mg/L	1	9/25/2006
1,2-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/25/2006
1,3-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/25/2006
1,4-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/25/2006
2,4,5-Trichlorophenol	U		0.0010	0.010	mg/L	1	9/25/2006
2,4,6-Trichlorophenol	υ		0.0010	0.010	mg/L	1	9/25/2006
2,4-Dichlorophenol	U		0.0010	0.010	mg/L	4	9/25/2006
2,4-Dimethylphenol	U		0.0010	0.010	mg/L	1	9/25/2006
2,4-Dinitrophenol	U		0.0010	0.010	mg/L	1	9/25/2006
2,4-Dinitrotoluene	U		0.00070	0.010	mg/L	1	9/25/2006
2,6-Dinitrotoluene	U		0.00080	0.010	mg/L	1	9/25/2006
2-Chloronaphthalene	U		0.0010	0.010	mg/L	1	9/25/2006
2-Chlorophenol	U		0.0010	0.010	mg/L	1	9/25/2006
2-Methyinaphthalene	U		0.00050	0.010	mg/L	1	9/25/2006
2-Methylphenol	U		0.0010	0.010	mg/L	1	9/25/2006
2-Nitroaniline	U		0.00050	0.010	mg/L	1	9/25/2006
2-Nitrophenol	U		0.00070	0.010	mg/L	1	9/25/2006
3&4-Methylphenol	U		0.0010	0.010	mg/L	1	9/25/2006
3,3'-Dichlorobenzidine	U		0.00070	0.010	mg/L	1	9/25/2006
3-Nitroaniline	U		0.0010	0.010	mg/L	1	9/25/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery of

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits P - Dual Column results RPD > 40%

detected below quantitation minus

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

H - Analyzed outside of Hold Time

AR Page 1 of 20

CLIENT:	Terracon Consulting Engineers & Scientists
Work Order:	0609262
Project:	92067647/North of Valsco
Lab ID:	0609262-01

Client Sample ID: MW-1A Collection Date: 9/19/2006 11:20:00 AM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
4.6-Dinitro-2-methylphenol	U		0.0010	0.010	mg/L	1	9/25/2006
4-Bromophenyl phenyl ether	U		0.00050	0.010	mg/L	1	9/25/2006
4-Chloro-3-methylphenol	U		0.0010	0.010	mg/L	1	9/25/2006
4-Chloroaniline	U		0.0010	0.010	mg/L	1	9/25/2006
4-Chlorophenyl phenyl ether	U		0.00050	0.010	mg/L	1	9/25/2006
4-Nitroaniline	U		0.00090	0.010	mg/L	1	9/25/2006
4-Nitrophenol	U		0.0010	0.010	mg/L.	1	9/25/2006
Acenaphthene	U		0.00050	0.010	mg/L	1	9/25/2006
Acenaphthylene	U		0.0010	0.010	mg/L	1	9/25/2006
Anthracene	U		0.00070	0.010	mg/L	1	9/25/2006
Benz(a)anthracene	U		0.00050	0.010	mg/L	1	9/25/2006
Benzo(a)pyrene	U		0.00050	0.010	mg/L	1	9/25/2006
Benzo(b)fluoranthene	U		0.00070	0.010	mg/L	1	9/25/2006
Benzo(g,h,i)perylene	U		0.00050	0.010	mg/L	1	9/25/2006
Benzo(k)fluoranthene	U		0.00050	0.010	mg/L	1	9/25/2006
Bis(2-chloroethoxy)methane	U		0.00070	0.010	mg/L	1	9/25/2006
Bis(2-chloroethyl)ether	U		0.00080	0.010	mg/L	1	9/25/2006
Bis(2-chloroisopropyl)ether	U		0.00050	0.010	mg/L	1	9/25/2006
Bis(2-ethylhexyl)phthalate	0.089		0.00050	0.010	mg/L	1	9/25/2006
Butyl benzyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Carbazole	U		0.00050	0.010	mg/L	1	9/25/2006
Chrysene	U		0.00050	0.010	mg/L	1	9/25/2006
Di-n-butyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Di-n-octyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Dibenz(a,h)anthracene	U		0.0010	0.010	mg/L	1	9/25/2006
Dibenzofuran	U		0.00050	0.010	mg/L	1	9/25/2006
Diethyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Dimethyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Fluoranthene	U		0.00050	0.010	mg/L	1	9/25/2006
Fluorene	U		0.00050	0.010	mg/L	1	9/25/2006
Hexachiorobenzene	U	1	0.00050	0.010	mg/L	1	9/25/2006
Hexachlorobutadiene	U	l	0.00060	0.010	mg/L	1	9/25/2006
Hexachlorocyclopentadiene	U	I	0.00050	0.010	mg/L	1	9/25/2006
Hexachioroethane	U	l	0.00050	0.010	mg/L	1	9/25/2006
Indeno(1,2,3-cd)pyrene	U	ŧ.	0.00050	0.010	mg/L	4	9/25/2006
Isophorone	U	l .	0.00050	0.010	mg/L	1	9/25/2006
N-Nitrosodi-n-propylamine	U	I	0.00050	0.010	mg/L	1	9/25/2006
N-Nitrosodiphenylamine	U	I	0.00050	0.010	mg/L	1	9/25/2006
Naphthalene	U	I	0.00050	0.010		1	9/25/2006
Nitrobenzene	U	l	0.00050	0.010	mg/L	1	9/25/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

P - Dual Column results RPD > 40%

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists
Work Order:	0609262
Project:	92067647/North of Valsco
Lab ID:	0609262-01

Client Sample ID: MW-1A Collection Date: 9/19/2006 11:20:00 AM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/25/2006
Phenanthrene	U		0.00050	0.010	mg/L	1	9/25/2006
Phenol	U		0.00050	0.010	mg/L	1	9/25/2006
Pyrene	U		0.00050	0.010	mg/L	1	9/25/2006
Surr: 2,4,6-Tribromophenol	59.2			39-153	%REC	1	9/25/2006
Surr: 2-Fluorobiphenyl	57.3			40-147	%REC	1	9/25/2006
Surr: 2-Fluorophenol	51.8			21-110	%REC	1	9/25/2006
Surr: 4-Terphenyl-d14	64,8			39-141	%REC	1	9/25/2006
Surr: Nitrobenzene-d5	59.7			37-140	%REC	1	9/25/2006
Surr: Phenol-d6	57.1			11-100	%REC	1	9/25/2006
VOLATILES BY GC/MS		Met	hod: SW8260				Analyst: PC
1,1,1-Trichloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	mg/L	1	9/20/2006
1,1,2-Trichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2,4-Trimethylbenzene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,2-Dichloropropane	U		0.00070	0.0050	mg/L	1	9/20/2006
1,3,5-Trimethylbenzene	U		0.00070	0.0050	mg/L	1	9/20/2006
2-Butanone	U		0.00080	0.010	mg/L	1	9/20/2006
2-Hexanone	U		0.0025	0.010	mg/L	1	9/20/2006
4-Methyl-2-pentanone	U		0.0016	0.010	mg/L	1	9/20/2006
Acetone	U		0.0025	0.010	mg/L	1	9/20/2006
Benzene	U		0.00060	0.0050	mg/L	4	9/20/2006
Bromodichloromethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Bromoform	U		0.00080	0.0050	mg/L	1	9/20/2006
Bromomethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Carbon disulfide	U		0.00070	0.010	mg/L	1	9/20/2006
Carbon tetrachloride	U		0.00060	0.0050	mg/L	1	9/20/2006
Chlorobenzene	U		0.00050	0.0050	mg/L	1	9/20/2006
Chloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
Chloroform	U		0.00050	0.0050	mg/L	1	9/20/2006
Chloromethane	U		0.00050	0.0050	mg/L	1	9/20/2006
cis-1,2-Dichloroethene	U		0.00050	0.0050) mg/L	1	9/20/2006
cis-1,3-Dichloropropene	U		0.00050	0.0050	mg/L	1	9/20/2006
Dibromochloromethane	· U	l	0.00050	0.0050) mg/L	1	9/20/2006
Ethylbenzene	U	l	0.00050	0.0050) mg/L	1	9/20/2006
m,p-Xylene	U	I	0.0010	0.010) mg/L	1	9/20/2006
Methyl tert-butyl ether	U	I	0.00050	0.0050) mg/L	1	9/20/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

P - Dual Column results RPD > 40%

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Analyzed outside of Hold Time

AR Page 3 of 20

Date:	September	27,	2006	
-------	-----------	-----	------	--

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample
Work Order:	0609262	Collection I
Project:	92067647/North of Valsco	
Lab ID:	0609262-01	Mat

Client Sample ID: MW-1A Collection Date: 9/19/2006 11:20:00 AM

Matrix: WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Methylene chloride	U	0.00060	0.010	mg/L	1	9/20/2006
n-Butylbenzene	U	0.00080	0.0050	mg/L	1	9/20/2006
Naphthalene	U	0.0011	0.0050	mg/L	1	9/20/2006
o-Xylene	U	0.00050	0.0050	mg/L	1	9/20/2006
sec-Butylbenzene	U	0.00070	0.0050	mg/L	1	9/20/2006
Styrene	U	0.00050	0.0050	mg/L	1	9/20/2006
Tetrachloroethene	U	0.00050	0.0050	mg/L	1	9/20/2006
Toluene	U	0.00050	0.0050	mg/L	1	9/20/2006
trans-1,2-Dichloroethene	U	0.00060	0.0050	mg/L	1	9/20/2006
trans-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/20/2006
Trichloroethene	0.0052	0.00070	0.0050	mg/L	1	9/20/2006
Vinyl chloride	U	0.00060	0.0020	mg/L	1	9/20/2006
Xylenes, Total	U	0.0015	0.015	mg/L	1	9/20/2006
Surr: 1,2-Dichloroethane-d4	101		70-125	%REC	1	9/20/2006
Surr: 4-Bromofluorobenzene	108		72.4-125	%REC	1	9/20/2006
Surr: Dibromofluoromethane	107		71.2-125	%REC	1	9/20/2006
Surr: Toluene-d8	111		75-125	%REC	1	9/20/2006

Qualifiers:

U - Analyzed for but Not Detected

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range
- H Analyzed outside of Hold Time

Date: September 27, 2006

Date: 9/19/2006 12:35:00 PM

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	MW-2
Work Order:	0609262	Collection Date:	9/19/2006
Project:	92067647/North of Valsco		
Lab ID:	0609262-02	Matrix:	WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TEXAS TPH		Meth	nod: TX1005		Prep: TX	1005PR / 9/22/06	Analyst: JFT
nC6 to nC12	U		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28	U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35	U		0.20	0.50	mg/L	1	9/26/2006
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorobiphenyl	148	S		70-130	%REC	1	9/26/2006
Surr: Trifluoromethyl benzene	120			70-130	%REC	1	9/26/2006
MERCURY, TOTAL		Meti	nod: SW7470		Prep: SV	v7470 / 9/21/06	Analyst: JCJ
Mercury	0.0000490	J	0.000042	0.000200	mg/L	1	9/22/2006
ICP METALS, TOTAL		Met	hod: SW6020		Prep: SV	V3010A / 9/22/06	Analyst: ALR
Arsenic	U		0.0018	0.00500	mg/L	1	9/22/2006
Barium	0.0957		0.00060	0.00500	mg/L	1	9/22/2006
Cadmium	U		0.00015	0.00100	mg/L	1	9/22/2006
Chromium	0.00166	J	0.00050	0.00200	mg/L	1	9/22/2006
Lead	0.00472	J	0.00020	0.00500	mg/L	1	9/22/2006
Selenium	U		0.0017	0.00500	mg/L	4	9/22/2006
Silver	U		0.00020	0.00500	mg/L	1	9/22/2006
TCL SEMIVOLATILE ORGANICS		Met	hod: SW8270		Prep: SV	V3510 / 9/21/06	Analyst: RSS
1,2,4-Trichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,2-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,3-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,4-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
2,4,5-Trichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4,6-Trichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dimethylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dinitrophenol	U		0.0010	0.010	mg/L	· 1	9/26/2006
2,4-Dinitrotoluene	υ		0.00070	0.010	mg/L	1	9/26/2006
2,6-Dinitrotoluene	U		0.00080	0.010	mg/L	1	9/26/2006
2-Chloronaphthalene	U		0.0010	0.010	mg/L	1	9/26/2006
2-Chlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2-Methylnaphthalene	U		0.00050	0.010	mg/L	1	9/26/2006
2-Methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
2-Nitroaniline	U		0.00050	0.010	mg/L	1	9/26/2006
2-Nitrophenol	U		0.00070	0.010	mg/L	1	9/26/2006
3&4-Methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
3,3'-Dichlorobenzidine	U		0.00070	0.010	mg/L	1	9/26/2006
3-Nitroaniline	U		0.0010	0.010) mg/L	1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

P - Dual Column results RPD > 40%

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Analyzed outside of Hold Time

AR Page 5 of 20

CLIENT:	Terracon Consulting Engineers & Scientists	Client
Work Order:	0609262	Coll
Project:	92067647/North of Valsco	
Lab ID:	0609262-02	

Client Sample ID: MW-2 Collection Date: 9/19/2006 12:35:00 PM

Matrix: WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyze
4,6-Dinitro-2-methylphenol	Ų	0.0010	0.010	mg/L	1	9/26/2006
4-Bromophenyl phenyl ether	U	0.00050	0.010	mg/L	. 1	9/26/2006
4-Chloro-3-methylphenol	U	0.0010	0.010	mg/L	1	9/26/2006
4-Chloroaniline	U	0.0010	0.010	mg/L	1	9/26/2006
4-Chlorophenyl phenyl ether	U	0.00050	0.010	mg/L	1	9/26/2006
4-Nitroaniline	U	0.00090	0.010	mg/L	1	9/26/2006
4-Nitrophenol	U	0.0010	0.010	mg/L	1	9/26/2006
Acenaphthene	U	0.00050	0.010	mg/L	1	9/26/2006
Acenaphthylene	U	0.0010	0.010	mg/L	1	9/26/2006
Anthracene	U	0.00070	0.010	mg/L	1	9/26/2006
Benz(a)anthracene	U	0.00050	0.010	mg/L	1	9/26/2006
Benzo(a)pyrene	U	0.00050	0.010	mg/L	1	9/26/2006
Benzo(b)fluoranthene	U	0.00070	0.010	mg/L	1	9/26/2006
Benzo(g,h,i)perylene	U	0.00050	0.010	mg/L	1	9/26/2006
Benzo(k)fluoranthene	U	0.00050	0.010	mg/L	1	9/26/2006
Bis(2-chloroethoxy)methane	U	0.00070	0.010	mg/L	1	9/26/2006
Bis(2-chloroethyl)ether	U	0.00080	0.010	mg/L	1	9/26/2006
Bis(2-chloroisopropyl)ether	U	0.00050	0.010	mg/L	1	9/26/2006
Bis(2-ethylhexyl)phthalate	0.34	0.0025	0.050	mg/L	5	9/26/2006
Butyl benzyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Carbazole	U	0.00050	0.010	mg/L	1	9/26/2006
Chrysene	U	0.00050	0.010	mg/L	1	9/26/2006
Di-n-butyl phthalate	υ	0.00050	0.010		1	9/26/2006
Di-n-octyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Dibenz(a,h)anthracene	U	0.0010	0.010	mg/L	1	9/26/2006
Dibenzofuran	U	0.00050	0.010	mg/L	1	9/26/2006
Diethyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Dimethyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Fluoranthene	U	0.00050	0.010	mg/L	1	9/26/2006
Fluorene	U	0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobenzene	U	0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobutadiene	U	0.00060	0.010	mg/L.	1	9/26/2006
Hexachlorocyclopentadiene	U	0.00050	0.010	mg/L	1	9/26/2006
Hexachloroethane	U	0.00050	0.010	mg/L	1	9/26/2006
Indeno(1,2,3-cd)pyrene	U	0.00050	0.010	•	1	9/26/2006
Isophorone	Ŭ	0.00050	0.010	•	1	9/26/2006
N-Nitrosodi-n-propylamine	U	0.00050	0.010	-	1	9/26/2006
N-Nitrosodiphenylamine	U	0.00050	0.010	•	1	9/26/2006
Naphthalene	U	0.00050	0.010	÷	1	9/26/2006
Nitrobenzene	Ū	0.00050	0.010	•	1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40%

E - Value above quantitation range

H - Analyzed outside of Hold Time

AR Page 6 of 20

CLIENT:	Terracon Consulting Engineers & Scientists
Work Order:	0609262
Project:	92067647/North of Valsco
Lab ID:	0609262-02

Client Sample ID: MW-2 Collection Date: 9/19/2006 12:35:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
Phenanthrene	U		0.00050	0.010	mg/L	1	9/26/2006
Phenol	U		0.00050	0.010	mg/L	1	9/26/2006
Pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Surr: 2,4,6-Tribromophenol	72.8			39-153	%REC	1	9/26/2006
Surr: 2,4,6-Tribromophenol	57.2			39-153	%REC	5	9/26/2006
Surr: 2-Fluorobiphenyl	66.2			40-147	%REC	1	9/26/2006
Surr: 2-Fluorobiphenyl	55.4			40-147	%REC	5	9/26/2006
Surr: 2-Fluorophenol	60.0			21-110	%REC	1	9/26/2006
Surr: 2-Fluorophenol	50.1			21-110	%REC	5	9/26/2006
Surr: 4-Terphenyl-d14	73.3			39-141	%REC	1	9/26/2006
Surr: 4-Terphenyl-d14	59,5			39-141	%REC	5	9/26/2006
Sur: Nitrobenzene-d5	71.5			37-140	%REC	1	9/26/2006
Surr: Nitrobenzene-d5	59,5			37-140	%REC	- 5	9/26/2006
Surr: Phenol-d6	66.8			11-100	%REC	1	9/26/2006
Surr: Phenol-d6	54.5			11-100	%REC	5	9/26/2006
OLATILES BY GC/MS		Meth	nod: SW8260				Analyst: PC
1,1,1-Trichloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	mg/L	1	9/20/2006
1,1,2-Trichloroethane	υ		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2,4-Trimethylbenzene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,2-Dichloropropane	U		0.00070	0.0050	mg/L	1	9/20/2006
1,3,5-Trimethylbenzene	U		0.00070	0.0050	mg/L	1	9/20/2006
2-Butanone	U		0.00080	0.010	mg/L	1	9/20/2006
2-Hexanone	U		0.0025	0.010	mg/L	1	9/20/2006
4-Methyl-2-pentanone	U		0.0016	0.010	mg/L	1	9/20/2006
Acetone	U		0.0025	0.010	mg/L	1	9/20/2006
Benzene	U		0.00060	0.0050	mg/L	1	9/20/2006
Bromodichloromethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Bromoform	U		0.00080	0.0050	mg/L	1	9/20/2006
Bromomethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Carbon disulfide	U		0.00070	0.010	mg/L	1	9/20/2006
Carbon tetrachloride	U		0.00060	0.0050	mg/L	1	9/20/2006
Chlorobenzene	υ		0.00050	0.0050	mg/L	1	9/20/2006
Chloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
Chioroform	υ		0.00050	0.0050	mg/L	1	9/20/2006
Chloromethane	Ŭ		0.00050	0.0050	•	1	9/20/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

P - Dual Column results RPD > 40%

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

H - Analyzed outside of Hold Time

AR Page 7 of 20

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	MW-2
Work Order:	0609262	Collection Date:	9/19/2006 12:35:00 PM
Project:	92067647/North of Valsco		
Lab ID:	0609262-02	Matrix:	WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
cis-1,2-Dichloroethene	U	0.00050	0.0050	mg/L	1	9/20/2006
cis-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/20/2006
Dibromochloromethane	U	0.00050	0.0050	mg/L	1	9/20/2006
Ethylbenzene	U	0.00050	0.0050	mg/L	1	9/20/2006
m,p-Xylene	U	0.0010	0.010	mg/L	1	9/20/2006
Methyl tert-butyl ether	U	0.00050	0.0050	mg/L	1	9/20/2006
Methylene chloride	U	0.00060	0.010	mg/L	1	9/20/2006
n-Butylbenzene	U	0.00080	0.0050	mg/L	1	9/20/2006
Naphthalene	υ	0.0011	0.0050	mg/L	1	9/20/2006
o-Xylene	U	0.00050	0.0050	mg/L	1	9/20/2006
sec-Butylbenzene	U	0.00070	0.0050	mg/L	1	9/20/2006
Styrene	υ	0.00050	0.0050	mg/L	1	9/20/2006
Tetrachloroethene	U	0.00050	0.0050	mg/L	1	9/20/2006
Toluene	U	0.00050	0.0050	mg/L	1	9/20/2006
trans-1.2-Dichloroethene	U	0.00060	0.0050	mg/L	1	9/20/2006
trans-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/20/2006
Trichloroethene	U	0.00070	0.0050	mg/L	1	9/20/2006
Vinvi chloride	U	0.00060	0.0020	mg/L	1	9/20/2006
Xvienes, Total	U	0.0015	0.015	mg/L	1	9/20/2006
Surr: 1,2-Dichloroethane-d4	101		70-125	%REC	1	9/20/2006
Surr: 4-Bromofluorobenzene	109		72.4-125	%REC	1	9/20/2006
Surr: Dibromofluoromethane	109		71.2-125	%REC	1	9/20/2006
Surr: Toluene-d8	110		75-125	%REC	1	9/20/2006

Qualifiers:

U - Analyzed for but Not Detected

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range
- H Analyzed outside of Hold Time

CLIENT:	Terracon Consulting Engineers & Scientists	Client
Work Order:	0609262	Colle
Project:	92067647/North of Valsco	
Lab ID:	0609262-03	

Client Sample ID: MW-3 Collection Date: 9/19/2006 2:25:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TEXAS TPH		Meth	od: TX1005		Prep: TX	1005PR / 9/22/06	Analyst: JFT
nC6 to nC12	U		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28	U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35	U		0.20	0.50	mg/L	1	9/26/2006
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorobiphenyl	234	S		70-130	%REC	1	9/26/2006
Surr: Trifluoromethyl benzene	164	S		70-130	%REC	1	9/26/2006
MERCURY, TOTAL		Meth	od: SW7470		Prep: SV	V7470 / 9/21/06	Analyst: JCJ
Mercury	U		0.000042	0.000200	mg/L	1	9/22/2006
ICP METALS, TOTAL		Meth	od: SW6020		Prep: SV	V3010A / 9/22/06	Analyst: ALR
Arsenic	0.00204	J	0.0018	0.00500	mg/L	1	9/22/2006
Barium	0.0705		0.00060	0.00500	mg/L	1	9/22/2006
Cadmium	U		0.00015	0.00100	mg/L	1	9/22/2006
Chromium	0.00129	J	0.00050	0.00200	mg/L	1	9/22/2006
Lead	0.0146		0.00020	0.00500	mg/L	1	9/22/2006
Selenium	U		0.0017	0.00500	mg/L	1	9/22/2006
Silver	U		0.00020	0.00500	mg/L	1	9/22/2006
TCL SEMIVOLATILE ORGANICS		Meth	od: SW8270		Prep: SV	V3510 / 9/21/06	Analyst: RSS
1,2,4-Trichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,2-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,3-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,4-Dichlorobenzene	U		0.00050	0.010	mg/L	4	9/26/2006
2,4,5-Trichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4,6-Trichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dimethylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dinitrophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dinitrotoluene	U		0.00070	0.010	mg/L	1	9/26/2006
2,6-Dinitrotoluene	U		0.00080	0.010	mg/L.	1	9/26/2006
2-Chioronaphthalene	U		0.0010	0.010	mg/L	1	9/26/2006
2-Chlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2-Methylnaphthalene	U		0.00050	0.010	mg/L	1	9/26/2006
2-Methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
2-Nitroaniline	U		0.00050	0.010	mg/L	1	9/26/2006
2-Nitrophenol	U		0.00070	0.010	mg/L	1	9/26/2006
3&4-Methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
3,3'-Dichlorobenzidine	U		0.00070	0.010	mg/L	1	9/26/2006
3-Nitroaniline	U		0.0010	0.010	mg/L	1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

P - Dual Column results RPD > 40%

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample
Work Order:	0609262	Collection D
Project:	92067647/North of Valsco	
Lab ID:	0609262-03	Mat

Client Sample ID: MW-3 Collection Date: 9/19/2006 2:25:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
4-Bromophenyl phenyl ether	U		0.00050	0.010	mg/L	1	9/26/2006
4-Chloro-3-methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
4-Chloroaniline	U		0.0010	0.010	mg/L	1	9/26/2006
4-Chlorophenyl phenyl ether	U		0.00050	0.010	mg/L	1	9/26/2006
4-Nitroaniline	U		0.00090	0.010	mg/L	1	9/26/2006
4-Nitrophenol	U		0.0010	0.010	mg/L	1	9/26/2006
Acenaphthene	U		0.00050	0.010	mg/L	1	9/26/2006
Acenaphthylene	U		0.0010	0.010	mg/L	1	9/26/2006
Anthracene	U		0.00070	0.010	mg/L	1	9/26/2006
Benz(a)anthracene	U		0.00050	0.010	mg/L	1	9/26/2006
Benzo(a)pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Benzo(b)fluoranthene	U		0.00070	0.010	mg/L	1	9/26/2006
Benzo(g,h,i)perylene	U		0.00050	0.010	mg/L	1	9/26/2006
Benzo(k)fluoranthene	U		0.00050	0.010	mg/L	1	9/26/2006
Bis(2-chloroethoxy)methane	U		0.00070	0.010	mg/L	1	9/26/2006
Bis(2-chloroethyl)ether	U		0.00080	0.010	mg/L	1	9/26/2006
Bis(2-chloroisopropyl)ether	U		0.00050	0.010	mg/L	1	9/26/2006
Bis(2-ethylhexyl)phthalate	0.0029	J	0.00050	0.010	mg/L	1	9/26/2006
Butyl benzyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Carbazole	U		0.00050	0.010	mg/L	1	9/26/2006
Chrysene	U		0.00050	0.010	mg/L	1	9/26/2006
Di-n-butyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Di-n-octyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Dibenz(a,h)anthracene	U		0.0010	0.010	mg/L	1	9/26/2006
Dibenzofuran	U		0.00050	0.010	mg/L	1	9/26/2006
Diethyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Dimethyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Fluoranthene	U		0.00050	0.010	mg/L	1	9/26/2006
Fluorene	U		0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobutadiene	U		0.00060	0.010	mg/L	1	9/26/2006
Hexachlorocyclopentadiene	U		0.00050	0.010	mg/L	1	9/26/2006
Hexachloroethane	U		0.00050	0.010	mg/L	1	9/26/2006
Indeno(1,2,3-cd)pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Isophorone	U		0.00050	0.010	-	1	9/26/2006
N-Nitrosodi-n-propylamine	U		0.00050	0.010	mg/L	1	9/26/2006
N-Nitrosodiphenylamine	U		0.00050	0.010	mg/L	1	9/26/2006
Naphthalene	Ŭ		0.00050	0.010	•	1	9/26/2006
Nitrobenzene	Ŭ		0.00050	0.010	mg/L	1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected

- S Spike Recovery outside accepted recovery limits
- J Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- P Dual Column results RPD > 40%
- E Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	
Work Ord	ler: 0609262	Collection Date:	•
Project:	92067647/North of Valsco		
Lab ID:	0609262-03	Matrix:	Ĭ

Client Sample ID: MW-3 Collection Date: 9/19/2006 2:25:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
Phenanthrene	U		0.00050	0.010	mg/L	1	9/26/2006
Phenol	U		0.00050	0.010	mg/L	1	9/26/2006
Pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Surr: 2,4,6-Tribromophenol	81.8			39-153	%REC	1	9/26/2006
Surr: 2-Fluorobiphenyl	72.8			40-147	%REC	1	9/26/2006
Surr: 2-Fluorophenol	63.8			21-110	%REC	1	9/26/2006
Surr: 4-Terphenyl-d14	80.9			39-141	%REC	1	9/26/2006
Surr: Nítrobenzene-d5	75.7			37-140	%REC	1	9/26/2006
Surr: Phenol-d6	72.2			11-100	%REC	1	9/26/2006
VOLATILES BY GC/MS		Met	nod: SW8260				Analyst: PC
1,1,1-Trichloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	mg/L	1	9/20/2006
1,1,2-Trichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1.1-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2,4-Trimethylbenzene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,2-Dichloropropane	U		0.00070	0.0050	mg/L	1	9/20/2006
1,3,5-Trimethylbenzene	U		0.00070	0.0050		1	9/20/2006
2-Butanone	U		0.00080	0.010	mg/L	1	9/20/2006
2-Hexanone	U		0.0025	0.010	mg/L	1	9/20/2006
4-Methyl-2-pentanone	U		0.0016	0.010	mg/L	1	9/20/2006
Acetone	U		0.0025	0.010	mg/L	1	9/20/2006
Benzene	U		0.00060	0.0050	mg/L	1	9/20/2006
Bromodichloromethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Bromoform	U		0.00080	0.0050	mg/L	1	9/20/2006
Bromomethane	υ		0.00050	0.0050	mg/L	1	9/20/2006
Carbon disulfide	U		0.00070	0.010	mg/L	1	9/20/2006
Carbon tetrachloride	U		0.00060	0.0050	mg/L	1	9/20/2006
Chlorobenzene	U		0.00050	0.0050	mg/L	1	9/20/2006
Chloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
Chloroform	U		0.00050	0.0050	mg/L	1	9/20/2006
Chloromethane	ບ		0.00050	0.0050	mg/L	1	9/20/2006
cis-1,2-Dichloroethene	U		0.00050	0.0050	mg/L	1	9/20/2006
cis-1,3-Dichloropropene	U		0.00050	0.0050	mg/L	1	9/20/2006
Dibromochloromethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Ethylbenzene	U		0.00050	0.0050	mg/L	1	9/20/2006
m,p-Xylene	U		0.0010	0.010	mg/L	1	9/20/2006
Methyl tert-butyl ether	υ		0.00050	0.0050	mg/L	1	9/20/2006

Qualifiers: U - Analyzed for but Not Detected

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range
- H Analyzed outside of Hold Time

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID
Work Order:	0609262	Collection Date
Project:	92067647/North of Valsco	
Lab ID:	0609262-03	Matrix

Client Sample ID: MW-3 Collection Date: 9/19/2006 2:25:00 PM

Matrix: WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Methylene chloride	U	0.00060	0.010	mg/L	1	9/20/2006
n-Butylbenzene	U	0.00080	0.0050	mg/L	1	9/20/2006
Naphthalene	U	0.0011	0.0050	mg/L	1	9/20/2006
o-Xylene	U	0.00050	0.0050	mg/L	1	9/20/2006
sec-Butylbenzene	U	0.00070	0.0050	mg/L	1	9/20/2006
Styrene	U	0.00050	0.0050	mg/L	1	9/20/2006
Tetrachloroethene	U	0.00050	0.0050	mg/L	1	9/20/2006
Toluene	U	0.00050	0.0050	mg/L	1	9/20/2006
trans-1,2-Dichloroethene	U	0.00060	0.0050	mg/L	1	9/20/2006
trans-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/20/2006
Trichloroethene	U	0.00070	0.0050	mg/L	1	9/20/2006
Vinyl chloride	U	0.00060	0.0020	mg/L	1	9/20/2006
Xylenes, Total	U	0.0015	0.015	mg/L	1	9/20/2006
Surr: 1,2-Dichloroethane-d4	102		70-125	%REC	1	9/20/2006
Surr: 4-Bromofluorobenzene	111		72.4-125	%REC	1	9/20/2006
Surr: Dibromofluoromethane	108		71.2-125	%REC	1	9/20/2006
Surr: Toluene-d8	109		75-125	%REC	1	9/20/2006

Qualifiers:

U - Analyzed for but Not Detected

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range
- H Analyzed outside of Hold Time

CLIENT:	Terracon Consulting Engineers & Scientists	Client
Work Order:	0609262	Colle
Project:	92067647/North of Valsco	
Lab ID:	0609262-04	
Lab ID.	0005202 01	

Client Sample ID: MW-4 Collection Date: 9/19/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TEXAS TPH		Meth	od: TX1005		Prep: TX	1005PR / 9/22/06	Analyst: JFT
nC6 to nC12	U		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28	U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35	U		0.20	0.50	mg/L	1	9/26/2006
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorobiphenyl	156	S		70-130	%REC	1	9/26/2006
Surr: Trifluoromethyl benzene	120			70-130	%REC	1	9/26/2006
MERCURY, TOTAL		Meth	od: SW7470		Prep: SV	v7470 / 9/21/06	Analyst: JCJ
Mercury	U		0.000042	0.000200	mg/L.	1	9/22/2006
ICP METALS, TOTAL		Meth	od: SW6020		Prep: SV	V3010A / 9/22/06	Analyst: ALR
Arsenic	0.00198	J	0.0018	0.00500	mg/L	1	9/22/2006
Barium	0.0641		0.00060	0.00500	mg/L	1	9/22/2006
Cadmium	U		0.00015	0.00100	mg/L	1	9/22/2006
Chromium	0.00297		0.00050	0.00200	mg/L	1	9/22/2006
Lead	0.00537		0.00020	0.00500	mg/L	1	9/22/2006
Selenium	U		0.0017	0.00500	mg/L	1	9/22/2006
Silver	U		0.00020	0.00500	mg/L	1	9/22/2006
TCL SEMIVOLATILE ORGANICS		Meth	od: SW8270		Prep: SV	V3510 / 9/21/06	Analyst: RSS
1,2,4-Trichlorobenzene	υ		0.00050	0.010	mg/L	1	9/26/2006
1,2-Dichlorobenzene	ប		0.00050	0.010	mg/L	1	9/26/2006
1,3-Dichlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,4-Dichlorobenzene	υ		0.00050	0.010	mg/L	1	9/26/2006
2,4,5-Trichlorophenol	υ		0.0010	0.010	mg/L	1	9/26/2006
2,4,6-Trichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dichlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dimethylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dinitrophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dinitrotoluene	U		0.00070	0.010	mg/L	1	9/26/2006
2,6-Dinitrotoluene	U		0.00080	0.010	mg/L	1	9/26/2006
2-Chloronaphthalene	U		0.0010	0.010	mg/L	1	9/26/2006
2-Chlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
2-Methylnaphthalene	U		0.00050	0.010	mg/L	1	9/26/2006
2-Methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
2-Nitroaniline	u		0.00050	0.010) mg/L	1	9/26/2006
2-Nitrophenol	U		0.00070	0.010) mg/L	1	9/26/2006
3&4-Methylphenol	ť		0.0010	0.010) mg/L	1	9/26/2006
3,3'-Dichlorobenzidine	L	I	0.00070	0.010) mg/L	1	9/26/2006
3-Nitroaniline	L		0.0010	0.010) mg/L	1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40%

E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	C
Work Order:	0609262	
Project:	92067647/North of Valsco	
Lab ID:	0609262-04	

Client Sample ID: MW-4 Collection Date: 9/19/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
4-Bromophenyl phenyl ether	U		0.00050	0.010	mg/L.	1	9/26/2006
4-Chloro-3-methylphenol	U		0.0010	0.010	mg/L	1	9/26/2006
4-Chloroaniline	U		0.0010	0.010	mg/L	1	9/26/2006
4-Chlorophenyl phenyl ether	U		0.00050	0.010	mg/L	1	9/26/2006
4-Nitroaniline	U		0.00090	0.010	mg/L	1	9/26/2006
4-Nitrophenol	U		0.0010	0.010	mg/L	1	9/26/2006
Acenaphthene	U		0.00050	0.010	mg/L	1	9/26/2006
Acenaphthylene	U		0.0010	0.010	mg/L	1	9/26/2006
Anthracene	U		0.00070	0.010	mg/L	1	9/26/2006
Benz(a)anthracene	U		0.00050	0.010	mg/L	1	9/26/2006
Benzo(a)pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Benzo(b)fluoranthene	U		0.00070	0.010	mg/L	1	9/26/2006
Benzo(g,h,i)perylene	υ		0.00050	0.010	mg/L	1	9/26/2006
Benzo(k)fluoranthene	U		0.00050	0.010	mg/L	1	9/26/2006
Bis(2-chloroethoxy)methane	U		0.00070	0.010	mg/L	1	9/26/2006
Bis(2-chloroethyl)ether	U		0.00080	0.010	mg/L	1	9/26/2006
Bis(2-chloroisopropyl)ether	U		0.00050	0.010	mg/L	1	9/26/2006
Bis(2-ethylhexyl)phthalate	0.16		0.0025	0.050	mg/L	5	9/26/2006
Butyl benzyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Carbazole	U		0.00050	0.010	mg/L	1	9/26/2006
Chrysene	U		0.00050	0.010	mg/L	1	9/26/2006
Di-n-butyl phthalate	U		0.00050	0.010	mg/L.	-	9/26/2006
Di-n-octyl phthalate	U		0.00050	0.010	mg/L	1	9/26/2006
Dibenz(a,h)anthracene	U		0.0010	0.010	mg/L	1	9/26/2006
Dibenzofuran	U		0.00050	0.010	mg/L	1	9/26/2006
Diethyl phthalate	0.0058	; J	0.00050	0.010	mg/L	1	9/26/2006
Dimethyl phthalate	Ŭ		0.00050	0.010	mg/L	1	9/26/2006
Fluoranthene	U		0.00050	0.010	mg/L	1	9/26/2006
Fluorene	U		0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobenzene	U		0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobutadiene	U		0.00060	0.010	mg/L	1	9/26/2006
Hexachlorocyclopentadiene	U		0.00050	0.010	mg/L	1	9/26/2006
Hexachioroethane	U		0.00050	0.010	mg/L	1	9/26/2006
Indeno(1,2,3-cd)pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Isophorone	Ū		0.00050	0.010	mg/L	1	9/26/2006
N-Nitrosodi-n-propylamine	U	ŧ	0.00050	0.010	mg/L	1	9/26/2006
N-Nitrosodiphenylamine	U		0.00050	0.010) mg/L	1	9/26/2006
Naphthalene	U	ļ	0.00050	0.010	mg/L	1	9/26/2006
Nitrobenzene	Ű		0.00050	0.010	-	1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40%

E - Value above quantitation range

S - Spike Recovery outside accepted recovery limits

CLIENT:	Terracon Consulting Engineers & Scientists
Work Order:	0609262
Project:	92067647/North of Valsco
Lab ID:	0609262-04

Client Sample ID: MW-4 Collection Date: 9/19/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
Phenanthrene	U		0.00050	0.010	mg/L	1	9/26/2006
Phenol	U		0.00050	0.010	mg/L	1	9/26/2006
Pyrene	υ		0.00050	0.010	mg/L	1	9/26/2006
Surr: 2,4,6-Tribromophenol	77.8			39-153	%REC	1	9/26/2006
Sur: 2,4,6-Tribromophenol	60.4			39-153	%REC	5	9/26/2006
Surr: 2-Fluorobiphenyl	70.1			40-147	%REC	1	9/26/2006
Surr: 2-Fluorobiphenyl	56.2			40-147	%REC	5	9/26/2006
Sur: 2-Fluorophenol	64.1			21-110	%REC	1	9/26/2006
Surr: 2-Fluorophenol	51.2			21-110	%REC	5	9/26/2006
Surr: 4-Terphenyl-d14	78.0			39-141	%REC	1	9/26/2006
Sur: 4-Terphenyl-d14	61.3			39-141	%REC	5	9/26/2006
Surr: Nitrobenzene-d5	74.6			37-140	%REC	1	9/26/2006
Surr: Nitrobenzene-d5	58.8			37-140	%REC	5	9/26/2006
Surr: Phenol-d6	70.3			11-100	%REC	1	9/26/2006
Surr: Phenol-d6	56.8			11-100	%REC	5	9/26/2006
/OLATILES BY GC/MS		Metl	nod: SW8260				Analyst: PC
1,1,1-Trichloroethane	U		0.00060	0.0050	mg/L	1	9/20/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	mg/L	1	9/20/2006
1,1,2-Trichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2,4-Trimethylbenzene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,2-Dichloropropane	U		0.00070	0.0050	mg/L	1	9/20/2006
1,3,5-Trimethylbenzene	U		0.00070	0.0050	mg/L.	1	9/20/2006
2-Butanone	U		0.00080	0.010	mg/L	1	9/20/2006
2-Hexanone	U		0.0025	0.010	mg/L	1	9/20/2006
4-Methyl-2-pentanone	U		0.0016	0.010	mg/L	1	9/20/2006
Acetone	U		0.0025	0.010	mg/L	1	9/20/2006
Benzene	U		0.00060	0.0050	mg/L	1	9/20/2006
Bromodichloromethane	U		0.00050	0.0050	mg/L	1	9/20/2006
Bromoform	U		0.00080	0.0050	mg/L	1	9/20/2006
Bromomethane	U	l	0.00050	0.0050	mg/L	1	9/20/2006
Carbon disulfide	U	l	0.00070	0.010	mg/L	1	9/20/2006
Carbon tetrachloride	U	I	0.00060	0.0050	mg/L	1	9/20/2006
Chlorobenzene	U	1	0.00050	0.0050	mg/L	1	9/20/2006
Chloroethane	U	ļ	0.00060	0.0050	mg/L	1	9/20/2006
Chloroform	U	I	0.00050	0.0050	mg/L	1	9/20/2006
Chloromethane	ι	1	0.00050	0.0050	mg/L	1	9/20/2006

Qualifiers: U - Analyzed for but Not Detected

- 5 5piko (660) (
- J Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range

H - Analyzed outside of Hold Time

AR Page 15 of 20

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:
Work Order:	0609262	Collection Date:
Project:	92067647/North of Valsco	
Lab ID:	0609262-04	Matrix:

Client Sample ID: MW-4 Collection Date: 9/19/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
cis-1,2-Dichloroethene	U		0.00050	0.0050	mg/L	1	9/20/2006
cis-1,3-Dichloropropene	U		0.00050	0.0050	mg/L	1	9/20/2006
Dibromochloromethane	Ų		0.00050	0.0050	mg/L	1	9/20/2006
Ethylbenzene	U		0.00050	0.0050	mg/L.	1	9/20/2006
m,p-Xylene	U		0.0010	0.010	mg/L	1	9/20/2006
Methyl tert-butyl ether	U		0.00050	0.0050	mg/L	1	9/20/2006
Methylene chloride	U		0.00060	0.010	mg/L	1	9/20/2006
n-Butylbenzene	U		0.00080	0.0050	mg/L	1	9/20/2006
Naphthalene	U		0.0011	0.0050	mg/L	1	9/20/2006
o-Xylene	U		0.00050	0.0050	mg/L	1	9/20/2006
sec-Butylbenzene	U		0.00070	0.0050	mg/L	1	9/20/2006
Styrene	U		0.00050	0.0050	mg/L	1	9/20/2006
Tetrachloroethene	U		0.00050	0.0050	mg/L	4	9/20/2006
Toluene	U		0.00050	0.0050	mg/L	1	9/20/2006
trans-1,2-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/20/2006
trans-1,3-Dichloropropene	U		0.00050	0.0050	mg/L	1	9/20/2006
Trichloroethene	U		0.00070	0.0050	mg/L	1	9/20/2006
Vinyl chloride	U		0.00060	0.0020	mg/L	1	9/20/2006
Xylenes, Total	U		0.0015	0.015	mg/L	1	9/20/2006
Surr: 1,2-Dichloroethane-d4	97.9			70-125	%REC	1	9/20/2006
Surr: 4-Bromofluorobenzene	108			72.4-125	%REC	1	9/20/2006
Surr: Dibromofluoromethane	106			71.2-125	%REC	1	9/20/2006
Surr: Toluene-d8	109			75-125	%REC	1	9/20/2006

Qualifiers:

U - Analyzed for but Not Detected

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range

CLIENT: Terracon Consulting Engineers & Scientists				Client San	-	-		
Work Order:	0609262				Collectio	on Date:	9/19/2006	
Project:	92067647/North of Val	sco						
Lab ID:	0609262-05]	Matrix:	WATER	
Analyses		Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TE	KAS TPH		Meth	od: TX1005		Prep: T	K1005PR / 9/22/06	Analyst: JFT
nC6 to nC12		U		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28		U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35		U		0.20	0.50	mg/i	1	9/26/2006
Total Petroleum H	lvdrocarbon	U		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorot	•	173	S		70-130	%REC	1	9/26/2006
	nethyl benzene	124			70-130	%REC	1	9/26/2006
MERCURY, TOT	AL		Meth	od: SW7470		Prep: S	W7470 / 9/21/06	Analyst: JCJ
Mercury		U		0.000042	0.000200	mg/L	1	9/22/2006
CP METALS, TO	DTAL		Meth	nod: SW6020		Prep: S	W3010A / 9/22/06	Analyst: ALF
Arsenic		0.00190	ſ	0.0018	0.00500	mg/L	1	9/22/2006
Barium		0.0937		0.00060	0.00500	mg/L	1	9/22/2006
Cadmium		U		0.00015	0.00100	mg/L	1	9/22/2006
Chromium		0.00182	J	0.00050	0.00200	mg/L	1	9/22/2006
Lead		0.00452	J	0.00020	0.00500	mg/L	1	9/22/2006
Selenium		U		0.0017	0.00500	mg/L	1	9/22/2006
Silver		U		0.00020	0.00500	mg/L	1	9/22/2006
TCL SEMIVOLA	TILE ORGANICS		Meth	rod: SW8270		Prep: S	W3510 / 9/21/06	Analyst: RS
1,2,4-Trichlorobe	nzene	U		0.00050	0.010	mg/L	1	9/26/2006
1,2-Dichlorobenz	ene	U		0.00050	0.010	mg/L	1	9/26/2006
1,3-Dichlorobenz	ene	U		0.00050	0.010	mg/L	1	9/26/2006
1,4-Dichlorobenz	ene	U		0.00050	0.010	mg/L	1	9/26/2006
2,4,5-Trichloroph	enol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4,6-Trichloroph	enol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dichloropher	ol	U		0.0010	0.010	mg/L	1	9/26/2006
2,4-Dimethylphe	nol	υ		0.0010	0.010	-	1	9/26/2006
2,4-Dinitropheno]	U		0.0010		mg/L	1	9/26/2006
2,4-Dinitrotoluen	e	U		0.00070	0.010	mg/L	1	9/26/2006
2,6-Dinitrotoluen	e	U		0.00080	0.010	mg/L	1	9/26/2006
2-Chloronaphtha	lene	υ		0.0010	0.010	mg/L	1	9/26/2006
2-Chlorophenol		U		0.0010	0.010	mg/L	1	9/26/2006
2-Methylnaphtha	lene	U		0.00050	0.010	mg/L	1	9/26/2006
2-Methylphenol		U		0.0010	0.010	mg/L	1	9/26/2006
2-Nitroaniline		U		0.00050	0.010	mg/L	1	9/26/2006
2-Nitrophenol		U		0.00070	0.010	mg/L	1	9/26/2006
3&4-Methylphen	ol	U		0.0010	0.010	mg/L	1	9/26/2006
3,3'-Dichloroben		U		0.00070	0.010	mg/L	1	9/26/2006
3-Nitroaniline		U		0.0010	0.010		1	9/26/2006

Qualifiers: U - Analyzed for but Not Detected

- S Spike Recovery outside accepted recovery limits
- J Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40% E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	Dup-1
Work Order:	0609262	Collection Date:	9/19/2006
Project:	92067647/North of Valsco		
Lab ID:	0609262-05	Matrix:	WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	U	0.0010	0.010	mg/L	1	9/26/2006
4-Bromophenyl phenyl ether	U	0.00050	0.010	mg/L	1	9/26/2006
4-Chloro-3-methylphenol	U	0.0010	0.010	mg/L	1	9/26/2006
4-Chloroaniline	U	0.0010	0.010	mg/L	1	9/26/2006
4-Chlorophenyl phenyl ether	U	0.00050	0.010	mg/L	1	9/26/2006
4-Nitroaniline	U	0.00090	0.010	mg/L	1	9/26/2006
4-Nitrophenol	υ	0.0010	0.010	mg/L	1	9/26/2006
Acenaphthene	U	0.00050	0.010	mg/L	1	9/26/2006
Acenaphthylene	U	0.0010	0.010	mg/L	1	9/26/2006
Anthracene	U	0.00070	0.010	mg/L	1	9/26/2006
Benz(a)anthracene	υ	0.00050	0.010	mg/L	1	9/26/2006
Benzo(a)pyrene	U	0.00050	0.010	mg/L	1	9/26/2006
Benzo(b)fluoranthene	U	0.00070	0.010	mg/L	1	9/26/2006
Benzo(g,h,i)perylene	U	0.00050	0.010	mg/L	1	9/26/2006
Benzo(k)fluoranthene	υ	0.00050	0.010	mg/L	1	9/26/2006
Bis(2-chloroethoxy)methane	U	0.00070	0.010	mg/L	1	9/26/2006
Bis(2-chioroethyl)ether	U	0.00080	0.010	mg/L	1	9/26/2006
Bis(2-chloroisopropyl)ether	U	0.00050	0.010	mg/L	1	9/26/2006
Bis(2-ethylhexyl)phthalate	0.22	0.0025	0.050	mg/L	5	9/26/2006
Butyl benzyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Carbazole	U	0.00050	0.010	mg/L	1	9/26/2006
Chrysene	U	0.00050	0.010	mg/L	1	9/26/2006
Di-n-butyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Di-n-octyl phthalate	Ŭ	0.00050	0.010	mg/L	1	9/26/2006
Dibenz(a,h)anthracene	U	0.0010	0.010	mg/L	1	9/26/2006
Dibenzofuran	U	0.00050	0.010	mg/L	1	9/26/2006
Diethyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Dimethyl phthalate	U	0.00050	0.010	mg/L	1	9/26/2006
Fluoranthene	U	0.00050	0.010	mg/L	1	9/26/2006
Fluorene	U	0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobenzene	U	0.00050	0.010	mg/L	1	9/26/2006
Hexachlorobutadiene	U	0.00060	0.010	mg/L	1	9/26/2006
Hexachlorocyclopentadiene	Ų	0.00050	0.010	mg/L	1	9/26/2006
Hexachloroethane	U	0.00050	0.010	mg/L	1	9/26/2006
Indeno(1,2,3-cd)pyrene	U	0.00050	0.010	mg/L	1	9/26/2006
Isophorone	U	0.00050	0.010	mg/L	1	9/26/2006
N-Nitrosodi-n-propylamine	U	0.00050	0.010	mg/L	1	9/26/2006
N-Nitrosodiphenylamine	U	0.00050	0.010	mg/L	1	9/26/2006
Naphthalene	U	0.00050	0.010	mg/L	1	9/26/2006
Nitrobenzene	U	0.00050	0.010	mg/L	1	9/26/2006

U - Analyzed for but Not Detected Qualifiers:

- J Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client
Work Order:	0609262	Coll
Project:	92067647/North of Valsco	
Lab ID:	0609262-05	

Client Sample ID: Dup-1 Collection Date: 9/19/2006

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/26/2006
Phenanthrene	U		0.00050	0.010	mg/L	1	9/26/2006
Phenol	U		0.00050	0.010	mg/L	1	9/26/2006
Pyrene	U		0.00050	0.010	mg/L	1	9/26/2006
Surr: 2,4,6-Tribromophenol	82.0			39-153	%REC	1	9/26/2006
Surr: 2,4,6-Tribromophenol	60.3			39-153	%REC	5	9/26/2006
Surr: 2-Fluorobiphenyl	73.6			40-147	%REC	. 1	9/26/2006
Surr: 2-Fluorobiphenyl	56.2			40-147	%REC	5	9/26/2006
Surr: 2-Fluorophenol	57.0			21-110	%REC	1	9/26/2006
Sur: 2-Fluorophenol	43.8	J		21-110	%REC	5	9/26/2006
Surr: 4-Terphenyl-d14	81.7			39-141	%REC	1	9/26/2006
Surr: 4-Terphenyl-d14	62.5			39-141	%REC	5	9/26/2006
Surr: Nitrobenzene-d5	72.2			37-140	%REC	1	9/26/2006
Surr: Nítrobenzene-d5	57.6			37-140	%REC	5	9/26/2006
Surr: Phenol-d6	73.2			11-100	%REC	1	9/26/2006
Surr: Phenol-d6	55.3			11-100	%REC	5	9/26/2006
OLATILES BY GC/MS		Meti	nod: SW8260				Analyst: PC
1,1,1-Trichloroethane	υ		0.00060	0.0050	mg/L	1	9/20/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	mg/L	1	9/20/2006
1,1,2-Trichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,1-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2,4-Trimethylbenzene	U		0.00060	0.0050	mg/L	1	9/20/2006
1,2-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/20/2006
1,2-Dichloropropane	U		0.00070	0.0050	mg/L	4	9/20/2006
1,3,5-Trimethylbenzene	U		0.00070	0.0050	mg/L	1	9/20/2006
2-Butanone	U		0.00080	0.010	mg/L	1	9/20/2006
2-Hexanone	U		0.0025	0.010	mg/L	1	9/20/2006
4-Methyl-2-pentanone	U		0.0016	0.010	mg/L	1	9/20/2006
Acetone	U		0.0025	0.010) mg/L	1	9/20/2006
Benzene	U		0.00060	0.0050) mg/L	1	9/20/2006
Bromodichloromethane	U		0.00050	0.0050) mg/L	1	9/20/2006
Bromoform	U		0.00080	0.0050) mg/L	1	9/20/2006
Bromomethane	U		0.00050	0.0050) mg/L	1	9/20/2006
Carbon disulfide	U	l	0.00070	0.010) mg/L	1	9/20/2006
Carbon tetrachloride	U	ļ	0.00060	0.0050) mg/L	1	9/20/2006
Chlorobenzene	U	I	0.00050	0.0050) mg/L	1	9/20/2006
Chloroethane	U	l	0.00060	0.0050) mg/L	1	9/20/2006
Chloroform	U	i	0.00050	0.0050) mg/L	1	9/20/2006
Chioromethane	ŭ	I	0.00050	0.0050) mg/L	1	9/20/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- P Dual Column results RPD > 40%
- E Value above quantitation range

H - Analyzed outside of Hold Time

AR Page 19 of 20

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	I
Work Order:	0609262	Collection Date:	9
Project:	92067647/North of Valsco		
Lab ID:	0609262-05	Matrix:	V

Client Sample ID:	Dup-1
Collection Date:	9/19/2006

WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
cis-1,2-Dichloroethene	U	0.00050	0.0050	mg/L	1	9/20/2006
cis-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/20/2006
Dibromochloromethane	U	0.00050	0.0050	mg/L	1	9/20/2006
Ethylbenzene	U	0.00050	0.0050	mg/L	1	9/20/2006
m,p-Xylene	U	0.0010	0.010	mg/L	1	9/20/2006
Methyl tert-butyl ether	U	0.00050	0.0050	mg/L	1	9/20/2006
Methylene chloride	U	0.00060	0.010	mg/L	1	9/20/2006
n-Butylbenzene	U	0.00080	0.0050	mg/L	1	9/20/2006
Naphthalene	U	0.0011	0.0050	mg/L	1	9/20/2006
o-Xviene	U	0.00050	0.0050	mg/L	1	9/20/2006
sec-Butylbenzene	U	0.00070	0.0050	mg/L	1	9/20/2006
Styrene	U	0.00050	0.0050	mg/L	1	9/20/2006
Tetrachloroethene	U	0.00050	0.0050	mg/L	1	9/20/2006
Toluene	U	0.00050	0.0050	mg/L	1	9/20/2006
trans-1,2-Dichloroethene	U	0.00060	0.0050	mg/L	1	9/20/2006
trans-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/20/2006
Trichloroethene	U	0.00070	0.0050	mg/L.	1	9/20/2006
Vinyl chloride	U	0.00060	0.0020	mg/L	1	9/20/2006
Xylenes, Total	U	0.0015	0.015	mg/L	1	9/20/2006
Surr: 1,2-Dichloroethane-d4	102		70-125	%REC	1	9/20/2006
Surr: 4-Bromofluorobenzene	108		72.4-125	%REC	1	9/20/2006
Surr: Dibromofluoromethane	110		71.2-125	%REC	1	9/20/2006
Surr: Toluene-d8	111		75-125	%REC	1	9/20/2006

Qualifiers:

U - Analyzed for but Not Detected

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range

Date: Sep 27, 2006

Test Code: Test Number: Test Name:	8260_W SW8260 Volatiles by 0	GC/MS	METHOD DETECTION / REPORTING LIMITS		
Matrix:	Aqueous	Units: mg/L			
Type Analyte			CAS	MDL	Unadjusted MQL
A 1.1.1-Tr	ichloroethane		71-55-6	0.0006	0.005

• L	-			
A	1,1,1-Trichloroethane	71-55-6	0.0006	0.005
Α	1,1,2,2-Tetrachloroethane	79-34-5	0.0015	0.005
Α	1,1,2-Trichloroethane	79-00-5	0.0005	0.005
Α	1,1-Dichloroethane	75-34-3	0.0005	0.005
A	1,1-Dichloroethene	75-35-4	0.0006	0.005
Α	1,2,4-Trimethylbenzene	95-63-6	0.0006	0.005
A	1,2-Dichloroethane	107-06-2	0.0005	0.005
Α	1,2-Dichloropropane	78-87-5	0.0007	0.005
Α	1,3,5-Trimethylbenzene	108-67-8	0.0007	0.005
А	2-Butanone	78-93-3	0.0008	0.01
Α	2-Hexanone	591-78-6	0.0025	0.01
Α	4-Methyl-2-pentanone	108-10-1	0.0016	0.01
A	Acetone	67-64-1	0.0025	0.01
A	Benzene	71-43-2	0.0006	0.005
A	Bromodichloromethane	75-27-4	0.0005	0.005
Α	Bromoform	75-25-2	0.0008	0.005
A	Bromomethane	74-83-9	0.0005	0.005
A	Carbon disulfide	75-15-0	0.0007	0.01
A	Carbon tetrachloride	56-23-5	0.0006	0.005
A	Chlorobenzene	108-90-7	0.0005	0.005
Ā	Chloroethane	75-00-3	0.0006	0.005
A	Chloroform	67-66-3	0.0005	0.005
A	Chloromethane	74-87-3	0.0005	0.005
A	cis-1,2-Dichloroethene	156-59-2	0.0005	0.005
A	cis-1,3-Dichloropropene	10061-01-5	0.0005	0.005
A	Dibromochloromethane	124-48-1	0.0005	0.005
A	Ethylbenzene	100-41-4	0.0005	0.005
A	m,p-Xylene	136777-61-2	0.001	0.01
A	Methyl tert-butyl ether	1634-04-4	0.0005	0.005
A	Methylene chloride	75-09-2	0.0006	0.01
Α	n-Butylbenzene	104-51-8	0.0008	0.005
A	Naphthalene	91-20-3	0.0011	0.005
A	o-Xylene	95-47-6	0.0005	0.005
A	sec-Butylbenzene	135-98-8	0.0007	0.005
A	Styrene	100-42-5	0.0005	0.005
A	Tetrachloroethene	127-18-4	0.0005	0.005
A	Toluene	108-88-3	0.0005	0.005
Â	trans-1,2-Dichloroethene	156-60-5	0.0006	0.00
A	trans-1,3-Dichloropropene	10061-02-6	0.0005	0.005
Â	Trichloroethene	79-01-6	0.0007	0.005
A	Vinyl chloride	75-01-4	0.0006	0.002

Date: Sep 27, 2006

M	Xylenes, Total	1330-20-7	0.0015	0.015
S	Surr: 1,2-Dichloroethane-d4	17060-07-0	0	0.005
S	Surr: 4-Bromofluorobenzene	460-00-4	0	0.005
S	Surr: Dibromofluoromethane	1868-53-7	0	0.005
ŝ	Surr: Toluene-d8	2037-26-5	0	0.005

Test Code:	8270_TCL_W	1	
Test Number:	SW8270		
Test Name:	TCL Semivol	atile Organics	
Matrix:	Aqueous	Units: mg/L	

METHOD DETECTION / REPORTING LIMITS

lyte 4-Trichlorobenzene Dichlorobenzene Dichlorobenzene 5-Trichlorophenol 5-Trichlorophenol Dichlorophenol Dinitrophenol Dinitrotoluene hloronaphthalene hlorophenol lethylnaphthalene lethylphenol itroaniline	CAS 120-82-1 95-50-1 541-73-1 106-46-7 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6 95-48-7	MDL 0.0005 0.0005 0.0005 0.001 0.001 0.001 0.001 0.001 0.0007 0.0008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005	Unadjusted MQ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Dichlorobenzene Dichlorobenzene 5-Trichlorophenol 6-Trichlorophenol Dichlorophenol Dimethylphenol Dinitrophenol Dinitrotoluene hloronaphthalene hlorophenol Lethylnaphthalene Iethylphenol	95-50-1 541-73-1 106-46-7 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.0005 0.0005 0.001 0.001 0.001 0.001 0.001 0.0007 0.0008 0.001 0.001	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dichlorobenzene Dichlorobenzene 5-Trichlorophenol 6-Trichlorophenol Dinethylphenol Dinitrophenol Dinitrotoluene Dinitrotoluene hloronaphthalene hlorophenol tethylnaphthalene Iethylphenol	541-73-1 106-46-7 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.0005 0.001 0.001 0.001 0.001 0.001 0.0007 0.0008 0.001 0.001	0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dichlorobenzene 5-Trichlorophenol 5-Trichlorophenol Dichlorophenol Dimethylphenol Dinitrophenol Dinitrotoluene hloronaphthalene hlorophenol Iethylnaphthalene Iethylphenol	106-46-7 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.0005 0.001 0.001 0.001 0.001 0.0007 0.0008 0.001 0.001	0.0 0.0 0.0 0.0 0.1 0.1 0.1
5-Trichlorophenol 6-Trichlorophenol Dichlorophenol Dimethylphenol Dinitrophenol Dinitrotoluene hloronaphthalene hlorophenol Iethylnaphthalene Iethylphenol	95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.001 0.001 0.001 0.001 0.0007 0.0008 0.001 0.001	0.0 0.0 0.0 0.1 0.1 0.1
5-Trichlorophenol Dichlorophenol Dimethylphenol Dinitrophenol Dinitrotoluene Dinitrotoluene hloronaphthalene hlorophenol lethylnaphthalene Iethylphenol	88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.001 0.001 0.001 0.0007 0.0008 0.001 0.001	0.0 0.0 0.1 0.1 0.1 0.1
Dichlorophenol Dimethylphenol Dinitrophenol Dinitrotoluene Dinitrotoluene hloronaphthalene hlorophenol Iethylnaphthalene Iethylphenol	120-83-2 105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.001 0.001 0.0007 0.0008 0.001 0.001	0.0 0.0 0.0 0.0
Dimethylphenol Dinitrophenol Dinitrotoluene Dinitrotoluene hloronaphthalene hlorophenol Iethylnaphthalene Iethylphenol	105-67-9 51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.001 0.001 0.0007 0.0008 0.001 0.001	0.(0.(0.(0.(
Dinitrophenol Dinitrotoluene Dinitrotoluene hloronaphthalene hlorophenol lethylnaphthalene lethylphenol	51-28-5 121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.001 0.0007 0.0008 0.001 0.001	0. 0. 0.
Dinitrotoluene Dinitrotoluene hloronaphthalene hlorophenol lethylnaphthalene lethylphenol	121-14-2 606-20-2 91-58-7 95-57-8 91-57-6	0.0007 0.0008 0.001 0.001	0. 0.
Dinitrotoluene hloronaphthalene hlorophenol lethylnaphthalene lethylphenol	606-20-2 91-58-7 95-57-8 91-57-6	0.0008 0.001 0.001	0.0
Dinitrotoluene hloronaphthalene hlorophenol lethylnaphthalene lethylphenol	91-58-7 95-57-8 91-57-6	0.001 0.001	
hloronaphthalene hlorophenol lethylnaphthalene lethylphenol	95-57-8 91-57-6	0.001	0.
hlorophenol lethylnaphthalene lethylphenol	91-57-6		
lethylnaphthalene lethylphenol		0.0005	0.
lethylphenol	95-48-7	0.0005	0.
• •		0.001	0.
	88-74-4	0.0005	0.
itrophenol	88-75-5	0.0007	0.
4-Methylphenol	106-44-5	0.001	0.
-Dichlorobenzidine	91-94-1	0.0007	0
litroaniline	99-09-2	0.001	0
Dinitro-2-methylphenol	534-52-1	0.001	0
romophenyl phenyl ether	101-55-3	0.0005	0
hloro-3-methylphenol	59-50-7	0.001	0
hloroaniline	106-47-8	0.001	0
hlorophenyl phenyl ether	7005-72-3	0.0005	0
litroaniline	100-01-6	0.0009	0
litrophenol	100-02-7	0.001	0
enaphthene	83-32-9	0.0005	0
-	208-96-8	0.001	0
enaphthylene thracene	120-12-7	0.0007	0
	56-55-3	0.0005	C
			C
			C
			(
			C
			(
• • •			
(2-ethylhexyl)phthalate			
(2-ethylhexyl)phthalate tyl benzyl phthalate	06 71 0		
		nzo(a)pyrene 50-32-8 nzo(b)fluoranthene 205-99-2 nzo(g,h,i)perylene 191-24-2 nzo(k)fluoranthene 207-08-9 (2-chloroethoxy)methane 111-91-1 (2-chloroethyl)ether 108-60-1 (2-chloroisopropyl)ether 108-60-1 (2-ethylhexyl)phthalate 117-81-7 tyl benzyl phthalate 85-68-7 tbazole 86-74-8	bit (a) him doub 50-32-8 0.0005 bizo(a) pyrene 50-32-8 0.0005 bizo(b) fluoranthene 205-99-2 0.0007 bizo(g,h,i) perylene 191-24-2 0.0005 bizo(k) fluoranthene 207-08-9 0.0005 (2-chloroethoxy) methane 111-91-1 0.0007 (2-chloroisopropyl) ether 108-60-1 0.0005 (2-ethyl hexyl) phthalate 117-81-7 0.0005 tyl benzyl phthalate 85-68-7 0.0005

Date: Sep 27, 2006

4	Di-n-butyl phthalate	84-74-2	0.0005	0.0
ł	Di-n-octyl phthalate	117-84-0	0.0005	0.0
4	Dibenz(a,h)anthracene	53-70-3	0.001	0.
A	Dibenzofuran	132-64-9	0.0005	0.
4	Diethyl phthalate	84-66-2	0.0005	0.
A	Dimethyl phthalate	131-11-3	0.0005	0.
A	Fluoranthene	206-44-0	0.0005	0.
A	Fluorene	86-73-7	0.0005	0
A	Hexachlorobenzene	118-74-1	0.0005	0
A.	Hexachlorobutadiene	87-68-3	0.0006	0
A	Hexachlorocyclopentadiene	77-47-4	0.0005	0
A	Hexachloroethane	67-72-1	0.0005	0
A	Indeno(1,2,3-cd)pyrene	193-39-5	0.0005	0
A	Isophorone	78-59-1	0.0005	0
A	N-Nitrosodi-n-propylamine	621-64-7	0.0005	C
A	N-Nitrosodiphenylamine	86-30-6	0.0005	0
A	Naphthalene	91-20-3	0.0005	C
A	Nitrobenzene	98-95-3	0.0005	C
A	Pentachlorophenol	87-86-5	0.001	C
A	Phenanthrene	85-01-8	0.0005	(
A	Phenol	108-95-2	0.0005	(
A	Pyrene	129-00-0	0.0005	(
S	Surr: 2,4,6-Tribromophenol	118-79-6	0	(
S	Surr: 2-Fluorobiphenyl	321-60-8	0	(
S	Surr: 2-Fluorophenol	367-12-4	0	(
S	Surr: 4-Terphenyl-d14	1718-51-0	0	(
S	Surr: Nitrobenzene-d5	4165-60-0	0	(
S	Surr: Phenol-d6	13127-88-3	0	(

Test Code: Test Number: Test Name:	HG_W SW7470 Mercury, Total			THOD DET CPORTING	FECTION / G LIMITS
Matrix:	Aqueous	Units: mg/L			
Type Analyte			CAS	MDL	Unadjusted MQL
A Mercury			7439-97-6	0.000042	0.0002

Test Code: Test Number: Test Name:	ICP_TW SW6020 ICP Metals, 7	Fotal	METHOD DETECTION / REPORTING LIMITS		
Matrix:	Aqueous	Units: mg/L			
Type Analyte			CAS	MDL	Unadjusted MQL
A			7440-38-2	0.0018	0.005

Туре	Analyte	CAS	MUL	Unadjusted MQL
Α	Arsenic	7440-38-2	0.0018	0.005
A	Barium	7440-39-3	0.0006	0.005
A	Cadmium	7440-43-9	0.00015	0.001
Â	Chromium	7440-47-3	0.0005	0.002
Â	Lead	7439-92-1	0.0002	0.005
A	Selenium	7782-49-2	0.0017	0.005
A	Silver	7440-22-4	0.0002	0.005

0 0

0

Test C Test N Test N	umber:	TX1005_W_ TX1005 Low-level Te		······································		ECTION / G LIMITS
Matrix	κ:	Aqueous	Units: mg/L			
Туре	Analyte			CAS	MDL	Unadjusted MQL
A	>nC12 t	o nC28		TPHDRO	0.2	0.5
А	>nC28 te	o nC35		10W40MOTO	0.2	0.5
А	nC6 to n	C12		TPHGRO	0.2	0.5
М	Total Pe	troleum Hydroc	arbon	TPH	0.2	0.5
S		2-Fluorobiphen		321-60-8	0	0

98-08-8

Surr: 2-Fluorobiphenyl S

S Surr: Trifluoromethyl benzene

CLIENT:	Terracon Consulting Engineers & Scientists
Work Order:	0609262
Project:	92067647/North of Valsco

Date: Sep 27 2006

QC BATCH REPORT

Batch ID: 19933 Instr	ument ID FID-7		Method	i: TX100	5						
								٨	naluaia Dai	101 00/00/	00 0.09
MBLK Sample ID: FBLK							its: mg/L		nalysis Dai		10 0:00
Client ID:	Run II	D: FID-7_0	60922B		Seq	No: 9568	40	Prep Date: 9/22	2006	DF: 1	
				SPK Ref Value		~~~~	Control Limit	RPD Ref Value	<u>م</u> م //	RPD Limit	Qual
Analyte	Result	MQL	SPK Val	value		%REC	Lint		%RPD		Quai
nC6 to nC12	U	0.50									
>nC12 to nC28	U	0.50									
>nC28 to nC35	U	0.50									
Total Petroleum Hydrocarbon	U	0.50									
Surr: 2-Fluorobiphenyl	5.919	0	5		0	118	70-130	0			
Surr: Trifluoromethyl benzene	5.657	0	5		0	113	70-130	0			
LCS Sample ID: FLCS	W1-060922					U	nits: mg/L	. A	nalysis Da	ite: 09/26/	06 6:4
Client ID:	Run II	D: FID-7_0	60922B		Sec	qNo: 9568	341	Prep Date: 9/22	/2006	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	MQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
nC6 to nC12	34.07	0.50	33.3		0	102	75-125	0			
>nC12 to nC28	36.15	0.50	33.3		0	109	75-125	0			
Surr: 2-Fluorobiphenyl	6.37	0	5		0	127	70-130	0			
Surr: Trifluoromethyl benzene	5.822	0	5		0	116	70-130	0			
LCSD Sample ID: FLCS	SDW1-060922					U	nits: mg/l	- /	Analysis Da	ate: 09/26 /	06 7:3
Client ID:		D: FID-7_0)60922B		Se	gNo: 956	842	Prep Date: 9/22	2/2006	DF: 1	
OROTA TO:				SPK Ref			Control	RPD Ref		RPD	
• • •	Beerlife	MQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
Analyte	Result	IVIC2L.	SEN VAL				·····				
nC6 to nC12	33.36	0.50	33.3		0	100	75-125	34.07	2.1	30	
>nC12 to nC28	35.1	0.50	33.3		0	105	75-125	36.15			
Surr: 2-Fluorobiphenyl	6.402	0	5		0	128	70-130		0.5		
Surr: Trifluoromethyl benzene	e 6.412	0	5		0	128	70-130	5.822	9.65	30	
MS Sample ID: 0609	262-01BMS					U	Inits: mg/	L	Analysis D	ate: 09/26	/06 9:3
Client ID: MW-1A	Run	ID: FID-7_	060922B		Se	qNo: 957	352	Prep Date: 9/2	2/2006	DF: 1	
				SPK Re	f		Control	RPD Ref		RPD	
Analyte	Result	MQL	SPK Val	Value	-	%REC	Limit	Value	%RPD	Limit	Qua
nC6 to nC12	48.35	0.50	33.3		0	145	75-125	C	ł		S
>nC12 to nC28	47.53	0.50	33.3		0	143	75-125	C	l		S
	8.306	0	5		0	166	70-130	· C	ŧ		S
Surr: 2-Fluorobiphenyl	0.000	•			-						

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

- B Analyte detected in assoc. Method Blank R - RPD outside accepted recovery limits
 - U Analyzed for but not detected

- O Referenced analyte value is > 4 times amount spiked
- P Dual Column results percent difference > 40%

E - Value above quantitation range

QC Page: 1 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

QC BATCH REPORT

Project: 92067647/North of Valsco

Batch ID: 19933	Instrument ID	FID-7		Metho	i: TX100	5						
MSD Sample	ID: 0609262-01BM	SD					U	nits: mg/l	L A	nalysis Da	ate: 09/26/	06 10:16
Client ID: MW-1A		Run ID): FID-7_0	60922B		Sec	No: 957	354	Prep Date: 9/22	/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
nC6 to nC12		45.72	0.50	33.3		0	137	75-125	48.35	5.59	30	S
>nC12 to nC28		45.95	0.50	33.3		0	138	75-125	47.53	3.38	30	S
Surt: 2-Fluorobipher	nyl	7.287	0	5		0	146	70-130	8.306	13.1	30	S
Surr: Trifluoromethy	l benzene	6.106	0	5		0	122	70-130	6.674	8.88	30	
The following sample	es were analyzed i	n this batch:	1 -	509262-01B 509262-04B			62-02B	06	09262-03B			

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 2 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

QC BATCH REPORT

Project: 92067647/North of Valsco

Batch ID: 19	321 Instrume	nt ID Mercury		Method	i: SW747	0						
MBLK	Sample ID: GBLKW1-	092106					Un	iits: mg/L		Analysis D	ate: 09/22 /	06 13:24
Client ID:		Run	ID: MERCU	RY_060922	2A	SeqNo:	9549	97	Prep Date: 9/	21/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%R	EC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Viercury		U	0.00020									
LCS	Sample ID: GLCSW1-	092106					Ur	nits: mg/L	•	Analysis D	ate: 09/22	/06 13:26
Client ID:		Run	ID: MERCU	RY_060922	2A	SeqNo:	9549	98	Prep Date: 9/	21/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%R	EC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.00462	0.00020	0.005		0 92	2.4	85-115		0		
LCSD	Sample ID: GLCSDW	1-092106					Ur	nits: mg/L	-	Analysis D	ate: 09/22	/06 13:2
Client ID:			ID: MERCU	RY_06092	2A	SeqNo:	9550	001	Prep Date: 9	/21/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%R	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.00472	0.00020	0.005		0 9	4.4	85-115	0.004	62 2.14	4 20	
MS	Sample ID: 0609262-0	1CMS					Uı	nits: mg/l	· · ·	Analysis D	ate: 09/22	/06 13:4
Client ID: M	N-1A	Run	ID: MERCU	IRY_06092	2A	SeqNo:	9550	010	Prep Date: 9	/21/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.00477	0.00020	0.005	0.0000	69	94	85-115		0		
MSD	Sample ID: 0609262-	1CMSD					U	nits: mg/l		Analysis [)ate: 09/22	2/06 13:5
Client ID: M	W-1A	Run	ID: MERCU	JRY_06092	2A	SeqNo:	955(015	Prep Date: 9	/21/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.00461	0.00020	0.005	0.0000	69 9	8.06	85-115	0.004	.77 3.4	1 20	
DUP	Sample ID: 0609262-	01CDUP					U	nits: mg/	L	Analysis [Date: 09/2:	2/06 13:4
Client ID: M			ID: MERCI	JRY_06092	22A	SeqNo:	955	005	Prep Date: 9	/21/2006	DF: 1	
			MOL		SPK Rei Value		REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	MQL	SPK Val	10100	701	KEU			701.01		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

E - Value above quantitation range QC Page: 3 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262Project:92067647/North of Valsco

QC BATCH REPORT

Batch ID: 19	9921 Instrument ID Mercury		Method	: SW747	0						
DUP	Sample ID: 0609270-01GDUP					U	nits: mg/	L	Analysis D	ate: 09/2	2/06 13:59
Client ID:	Run	ID: MERCU	JRY_060922	A	Seq	No: 955()31	Prep Date: 9/2	1/2006	DF: 1	
Analyte	Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	U	0.00020	0		0	0	0-0	0.000014	4 () 2()
The followi	ing samples were analyzed in this batch	" -	609262-01C 609262-04C	•		32-02C 32-05C	06	609262-03C			

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 4 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

QC BATCH REPORT

Project: 92067647/North of Valsco

Batch ID: 19	923 Instrument ID IC	CPMS02		Method	SW602	20						
MBLK	Sample ID: MBLKW1-09220	6					Ur	nits: mg/L		Analysis Da	ate: 09/22	/06 15:34
Client ID:	·	Run	ID: ICPMSO	2_060922A		Sec	qNo: 9552	.79 F	Prep Date: 9/2	22/2006	DF: 1	
		m 14			SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	MQL	SPK Val			MALO			70111 12		
Arsenic		U	0.0050									
Barium		U	0.0050									
Cadmium		U	0.0020									
Chromium		U	0.0050									
_ead		U	0.0050									
Selenium		U	0.0050									
Silver		U	0.0050									
LCS	Sample ID: MLCSW1-09220	6					U	nits: mg/L		Analysis D	ate: 09/22	2/06 15:4
Client ID:	Gampio i.s. mileoori i ooluo		ID: ICPMS	02_060922A		Se	qNo: 955	280	Prep Date: 9/	22/2006	DF: 1	
					SPK Ref Value	i	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	MQL	SPK Val								
Arsenic		0.05019	0.0050	0.05		0	100	80-121		0		
Barium		0.04887	0.0050	0.05		0	97.7	79.8-119		0		
Cadmium		0.05079	0.0020	0.05		0	102	79.1-119		0		
Chromium		0.04876	0.0050	0.05		0	97.5	79.3-121		0		
Lead		0.04972	0.0050	0.05		0	99.4	80-118		0		
Selenium		0.05108	0.0050	0.05		0	102	79.2-118		0		
Silver		0.04868	0.0050	0.05		0	97.4	80-117		0		
MS	Sample ID: 0609262-01CMS	3					Ų	inits: mg/L	-	Analysis E	Date: 09/2	2/06 18:3
Client ID: N	•		D: ICPMS	02_060922A		Se	eqNo: 955	295	Prep Date: 9	/22/2006	DF: 1	
		Result	MQL	SPK Val	SPK Re Value	f	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Quai
Analyte								00 404				
Arsenic		0.05271	0.0050	0.05	0.002		100	80-121		0		
Barium		0.1034	0.0050	0.05	0.06		85.1	79.8-119				
Cadmium		0.04701	0.0020	0.05	-0.0003		94.6	79.1-119		0		
Chromium		0.04923	0.0050	0.05	0.00		90.7	79.3-121		0		
Lead		0.05184	0.0050	0.05	0.002		97.9	80-118		0		
Selenium		0.05008	0.0050	0.05	0.00009		100	79.2-118)	0		
Silver		0.04241	0.0050	0.05	-0.0004	885	85.8	80-117		U		

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

Terracon Consulting Engineers & Scientists CLIENT:

Work Order: 0609262

92067647/North of Valsco

QC BATCH REPORT

Project:

Batch ID: 19923	Instrument ID ICPMS02		Method	i: SW6020						
MSD Sa	mple ID: 0609262-01CMSD				U	nits: mg/L	. А	nalysis Da	te: 09/22/	06 18:37
Client ID: MW-1/	A Rur	n ID: ICPMSC	2_060922A	sec	qNo: 955 2	296	Prep Date: 9/22	2006	DF: 1	
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Quai
	0.05245	0.0050	0.05	0.002533	99.8	80-121	0.05271	0.494	15	
Arsenic	0.1032	0.0050	0.05	0.06083	84.7	79.8-119	0.1034	0.194	15	
Barium	0.0471	0.0020	0.05	-0.0003028	94.8	79.1-119		0.191	15	
Cadmium Chromium	0.05105	0.0050	0.05	0.00387	94,4	79.3-121		3.63	15	
	0.05394	0.0050	0.05	0.002874	102	80-118	0.05184	3.97	15	
Lead Selenium	0.05076	0.0050	0.05	0.00009676	101	79.2-118	0.05008	1.35	15	
Selenium	0.04331	0.0050	0.05	-0.0004885	87.6	80-117	0.04241	2.1	15	
Citvei										
DUP S	ample ID: 0609262-01CDUP				U	nits: mg/l		nalysis Da		06 18:2
Client ID: MW-1	A Ru	n ID: ICPMS	02_060922/	A Se	qNo: 955	293	Prep Date: 9/22	/2006	DF: 1	
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Quai
	0.002543	0.0050	0	0	0	0-0	0.002533	0	25	J
Arsenic	0.06053	0.0050	0	0	0	0-0	0.06083	0.494		
Barium	U.00035	0.0020	0 0	Ő	0	0-0	-0.0003028	0		
Cadmium	0.00333	0.0020	0	0	0	0-0	0.00387	C		J
Chromium	0.002652	0.0050	Ő	Û	0	0-0	0.002874	C	25	J
Lead Selenium	U	0.0050	0	0	0	0-0	0.00009676	C) 25	
Silver	U	0.0050	0 0	0	0	0-0	-0.0004885	C) 25	
								Analysis D	oto: 00/00	100 49.4
PDS S	ample ID: 0609262-01CBS					Jnits: mg/		-maiysis D		100 10:4
Client ID: MW-1	A R.	in ID: ICPMS	02_060922	A Se	eqNo: 956	5297	Prep Date:		DF: 1	
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.1105	0.0050	0.1	0.002533	108	75-125	. 0			
Barium	0.1643	0.0050	0.1	0.06083	103	75-125	0			
Cadmium	0.1003	0.0020	0.1	-0.0003028	101	75-125	; O	i		
Chromium	0.1027	0.0050	0.1	0.00387	98.8	75-125	0	•		
Lead	0.1076	0.0050	0.1	0.002874	105	75-125	; 0)		
		0.0050	0.4	0.00000076	400	75 406	· · · · ·	1		

ND - Not Detected at the Reporting Limit

Selenium

Silver

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits

0.00009676

-0.0004885

106

75.5

75-125

75-125

R - RPD outside accepted recovery limits

0.1

0.1

0.0050

0.0050

0.1062

0.07505

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

0

0

E - Value above quantitation range QC Page: 6 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

QC BATCH REPORT

Project: 92067647/North of Valsco

Batch ID: 1	9923	Instrument ID ICPMS02	2		Method:	SW602	0						
SD	Sample ID): 0609262-01C DIL						Uı	nits: mg/ l	L /	Analysis Da	te: 09/22/	06 18:25
Client ID: N	IW-1A	R	un ID: ICP	MS02_	_060922A		Sec	qNo: 955 2	294	Prep Date:		DF: 5	
Analyte		Result	м	QL S	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic		U	0.0	25	0		0	0	0-0	0.002533	0	10	
Barium		0.06105	0.0	25	0		0	0	0-0	0.06083	0.362	10	
Cadmium		U	0.0	10	0		0	0	0-0	-0.0003028	0	10	
Chromium		U	0.0	25	0		0	0	0-0	0.00387	0	10	
Lead		ប	0.0	25	0		0	0	0-0	0.002874	0	10	
Selenium		U	0.0	25	0		0	0	0-0	0.00009676	0	10	
Silver		U	0.0	25	0		0	0	0-0	-0.0004885	0	10	
The follow	ing samples	were analyzed in this bat	tch:		9262-01C 9262-04C			262-02C 262-05C	06	09262-03C			

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 7 of 23

Terracon Consulting Engineers & Scientists **CLIENT:** Work Order: 0609262

QC BATCH REPORT

92067647/North of Valsco **Project:**

Batch ID: 19910	Instrument ID SV-4			Metho	d: SW827	0					
MBLK Sample	D: SBLKW1-060921					U	nits: µg/l	-	Analysis D	ate: 09/22	/06 16:12
Client ID:		Run II	D: SV-4_0	60922A		SeqNo: 957	199	Prep Date: 9/	21/2006	DF: 1	
	De	sult	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	: \C			01 11 14	.,,						
1,2,4-Trichlorobenzer	10	U	10								
1,2-Dichlorobenzene		U	10		·····						
1,3-Dichlorobenzene		U	10								
1,4-Dichlorobenzene		<u>U</u>	10								
2,4,5-Trichlorophenol		U	10								
2,4,6-Trichlorophenol		<u> </u>	10								
2,4-Dichlorophenol		U	10								
2,4-Dimethylphenol		<u>U</u>	10								
2,4-Dinitrophenol		U	10								
2,4-Dinitrotoluene		<u> </u>	10	·····							
2,6-Dinitrotoluene		U	10								
2-Chloronaphthalene		<u>U</u>	10								
2-Chlorophenol		U	10								
2-Methylnaphthalene		<u> </u>	10								
2-Methylphenol		U	10								
2-Nitroaniline	····	U	10								
2-Nitrophenol		U	10								
3&4-Methylphenol		U	10	,	, ,						
3,3'-Dichlorobenzidir	ne	U	10								
3-Nitroaniline		U	10				·····				
4,6-Dinitro-2-methylp		U	10								
4-Bromophenyl pher		U	10								
4-Chloro-3-methylph	enol	U	10								
4-Chloroaniline		U	10								
4-Chlorophenyl pher	nyl ether	U	10								
4-Nitroaniline		U	10								
4-Nitrophenol		U	10								
Acenaphthene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	U	10								
Acenaphthylene		U	10								
Anthracene		<u> </u>	10								
Benz(a)anthracene		U	10								
Benzo(a)pyrene	······································	<u>U</u>	10		·····			******			
Benzo(b)fluoranther		U	10								
Benzo(g,h,i)perylene		<u>U</u>	10								
Benzo(k)fluoranther		U	10								
Bis(2-chloroethoxy)		U	10								
Bis(2-chloroethyl)eth		U	10								
Bis(2-chloroisoprop		<u>U</u>	10								
Bis(2-ethylhexyl)pht		U	10								
Butyl benzyl phthala	ite	<u> </u>	10								

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank R - RPD outside accepted recovery limits

U - Analyzed for but not detected

P - Dual Column results percent difference > 40%

E - Value above quantitation range

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

Project: 92067647/North of Valsco

Batch ID: 19910	Instrument ID SV-4			Method:	SW8270					
Carbazole		U	10							
Chrysene		U	10							
Di-n-butyl phthalate		U	10							
Di-n-octyl phthalate		U	10							
Dibenz(a,h)anthracene		U	10							
Dibenzofuran		U	10			_				
Diethyl phthalate		U	10							
Dimethyl phthalate		U	10							
Fluoranthene		U	10							
Fluorene		U	10					,		······································
Hexachlorobenzene		U	10							
Hexachlorobutadiene		U	10							
Hexachlorocyclopentadiene		U	10							
Hexachloroethane		U	10							
Indeno(1,2,3-cd)pyrene		U	10							
Isophorone		U	. 10							
N-Nitrosodi-n-propylamine		U	10							
N-Nitrosodiphenylamine		U	10		1					
Naphthalene		U	10							
Nitrobenzene		U	10							
Pentachlorophenol		U	10							
Phenanthrene		U	10							
Phenol		U	10							
Pyrene		U	10							
Surr: 2,4,6-Tribromophe	nol 50	6.67	10	100		0	56.7	39-153	0	
Surr: 2-Fluorobiphenyl	6:	3.84	10	100		0	63.8	40-147	0	
Surr: 2-Fluorophenol	41	8.97	10	100		0	49	21-110	0	
Surr: 4-Terphenyl-d14	6	3.28	10	100		0	63.3	39-141	0	
Surr: Nitrobenzene-d5	5	6.59	10	100		0	56.6	37-140	0	
Surr: Phenol-d6		51.6	10	100		0	51.6	11-100	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected

E - Value above quantitation range QC Page: 9 of 23

CLIENT: Terracon Consulting Engineers & Scientists

QC BATCH REPORT

 Work Order:
 0609262

 Project:
 92067647/North of Valsco

Batch ID: 19910	Instrument ID SV-4		Method	i: SW827	70					
LCS Sample ID:	SLCSW1-060921					U	nits: µg/L	Analysis E	ate: 09/2	5/06 19:53
Client ID:		ID: SV-4_0	60922A		Sec	No: 957:	202	Prep Date: 9/21/2006	DF: 1	
		_		SPK Ref			Control	RPD Ref	RPD	
Analyte	Result	MQL	SPK Val	Value		%REC	Limit	Value %RPD	Limit	Qual
1,2,4-Trichlorobenzene	43.46	10	50		0	86.9	55.3-118	0		
1.2-Dichlorobenzene	44.34	10	50		0	88.7	55.9-115	0		
1,3-Dichlorobenzene	42.43	10	50		0	84.9	51.4-115	0		
1,4-Dichlorobenzene	43.1	10	50		0	86.2	53.2-115	0		
2,4,5-Trichlorophenol	91.6	10	100		0	91.6	59.2-126	0		
2,4,6-Trichlorophenol	90.31	10	100		0	90.3	59.8-120	0		
2,4-Dichlorophenol	89.87	10	100		0	89.9	57.6-121	0		
2,4-Dimethylphenol	88.79	10	100		0	88.8	57.2-115	0		
2,4-Dinitrophenol	87.03	10	100		0	87	46.2-124	0		
2,4-Dinitrotoluene	46.78	10	50		0	93.6	62.9-126	0		
2,6-Dinitrotoluene	45.1	10	50		0	90.2	62.2-128	0		
2-Chloronaphthalene	51.82	10	50		0	104	57.6-117	0		
2-Chlorophenol	89.12	10	100		0	89.1	54.3-115	0		
2-Methylnaphthalene	42.77	10	50		0	85.5	51.4-124	0		
2-Methylphenol	94.2	10	100		0	94.2	41.5-115	0		
2-Nitroaniline	46.38	10	50		0	92.8	59.3-125	0		
2-Nitrophenol	85.46	10	100		0	85.5	57.2-115	<u> </u>		
3&4-Methylphenol	144	10	150		0	96	33.3-115	i 0		
3,3'-Dichlorobenzidine	31	10	50		0	62	26.7-118	<u> </u>		
3-Nitroaniline	25.37	10	50		0	50.7	42.4-118	3 0		
4,6-Dinitro-2-methylphen	ol 92.47	10	100		0	92.5	60.1-129	0		
4-Bromophenyl phenyl e		10	50		0	89.3	62.3-130) 0		
4-Chloro-3-methylphenol	95.51	10	100		0	95.5	55.5-120) 0		
4-Chloroaniline	21.87	10	50		0	43.7	36.4-116	6 0		
4-Chlorophenyl phenyl ei	ther 45.8	10	50		0	91.6	64-124	0		
4-Nitroaniline	40.82	10	50		0	81.6	51.4-12	5 0		
4-Nitrophenol	95.38	10	100		0	95.4	17-100	0		
Acenaphthene	43.56	10	50		0	87.1	63.1-120	0 0		
Acenaphthylene	44.17	10	50		0	88.3	62.8-11	3 0		
Anthracene	45.88	10	50		0	91.8	64.5-12	3 0		
Benz(a)anthracene	48.26	10	50		0	96.5	60.1-12	5 0		
Benzo(a)pyrene	51.59	10	50		0	103	56.7-13	5 0		
Benzo(b)fluoranthene	53.97	10	50		0	108	50.5-13	4 0		
Benzo(g,h,i)perylene	47.83	10	50		0	95.7	52.2-13	в О		
Benzo(k)fluoranthene	50.47	10	50		0	101	60-140	0		
Bis(2-chloroethoxy)meth	nane 46.43	10	50		0	92.9	63.2-11	9 0		
Bis(2-chloroethyl)ether	48.16	10	50		0	96.3	62.3-11	5 0		
Bis(2-chloroisopropyl)et	her 49.48	10	50		0	99	54.9-11	7 0		
Bis(2-ethylhexyl)phthala		10	50		0	99.2	59.1-13	6 0		
Butyl benzyl phthalate	50.6	10			0	101	57.5-13	2 0		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 10 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

QC BATCH REPORT

Project: 92067647/North of Valsco

Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene	46.97 46.55 49.2 54.46 49.38 45.05 45.99 45.94 47.3 45.15	10 10 10 10 10 10 10 10 10 10	50 50 50 50 50 50 50 50 50	0 0 0 0 0 0 0 0	93.9 93.1 98.4 109 98.8 90.1 92	65.5-130 62.4-125 64.6-133 49.7-152 49.2-136 64.3-122 62.7-129	0 0 0 0 0 0	
Di-n-butyl phthalate Di-n-octyl phthalate Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	49.2 54.46 49.38 45.05 45.99 45.94 47.3 45.15	10 10 10 10 10 10 10	50 50 50 50 50 50	0 0 0 0	98.4 109 98.8 90.1	64.6-133 49.7-152 49.2-136 64.3-122	0 0 0 0	
Di-n-octyl phthalate Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	54.46 49.38 45.05 45.99 45.94 47.3 45.15	10 10 10 10 10	50 50 50 50	0 0 0 0	109 98.8 90.1	49.7-152 49.2-136 64.3-122	0 0 0	
Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	49.38 45.05 45.99 45.94 47.3 45.15	10 10 10 10	50 50 50	0 0 0	98.8 90.1	49.2-136 64.3-122	0	
Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	45.05 45.99 45.94 47.3 45.15	10 10 10	50 50	0 0	90.1	64.3-122	0	
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	45.99 45.94 47.3 45.15	10 10	50	0			4	
Dimethyl phthalate Fluoranthene	45.94 47.3 45.15	10			92	62 7 120		
Fluoranthene	47.3 45.15		50	~		VZ.1-123	0	
Fluoranthene	45.15	10		0	91.9	63.7-126	0	
Fluorene			50	0	94.6	61.2-128	0	
		10	50	0	90.3	64.9-121	0	
Hexachlorobenzene	47.08	10	50	0	94.2	65.6-126	0	
Hexachlorobutadiene	43.08	10	50	0	86.2	46.1-121	0	
Hexachlorocyclopentadiene	40.03	10	50	0	80.1	43.4-120	0	
Hexachloroethane	46.29	10	50	0	92.6	60-115	0	
Indeno(1,2,3-cd)pyrene	43.23	10	50	0	86.5	50.3-123	0	
Isophorone	45.9	10	50	0	91.8	62-121	0	
N-Nitrosodi-n-propylamine	47.86	10	50	0	95.7	59.7-116	0	
N-Nitrosodiphenylamine	45.56	10	50	0	91.1	65.1-136	0	
Naphthalene	44.36	10	50	0	88.7	59.9-115	0	
Nitrobenzene	44.41	10	50	0	88.8	59.1-134	0	
Pentachlorophenol	91.77	10	100	0	91.8	51.3-134	0	·····
Phenanthrene	47.04	10	50	0	94.1	65.2-122	0	
Phenol	88.59	10	100	0	88.6	16-115	0	
Pyrene	50.13	10	50	0	100	59.7-121	0	
Surr: 2,4,6-Tribromophen	ol 85.09	10	100	0	85.1	39-153	0	
Sun: 2-Fluorobiphenyl	83.55	10	100	0	83.6	40-147	0	
Surr: 2-Fluorophenol	83.02	10	100	0	83	21-110	0	
Surr: 4-Terphenyl-d14	94.02	10	100	0	94	39-141	0	
Surr: Nitrobenzene-d5	85.5	10	100	0	85.5	37-140	0	
Surr: Phenol-d6	90.87	10	100	0	90.9	11-100	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 11 of 23

Terracon Consulting Engineers & Scientists CLIENT:

QC BATCH REPORT

Work Order: 0609262

Project: 92067647/North of Valsco

MS Sample II): 0609262-01DMS					U	nits: µg/L	,	Analysis D	ate: 09/25	06 18:44
Client ID: MW-1A	Run	ID: SV-4_0	60922A		Seq	No: 957 :	201	Prep Date: 9/2	1/2006	DF: 1	
Analyte	Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	20.02	10	50		0	77.8	55.3-118	0	1		
1,2,4-Trichlorobenzene	38.92 39.57	10	50 50		0	79.1	55.9-115				
1,2-Dichlorobenzene 1,3-Dichlorobenzene	38.93	10	50		0	77.9	51.4-115				
1,4-Dichlorobenzene	39.23	10	50		0	78.5	53.2-115		}		
2,4,5-Trichlorophenol	86.98	10	100		0	87	59.2-126				
2,4,6-Trichlorophenol	82.29	10	100		0	82.3	59.8-120)		
2,4-Dichlorophenol	81.86	10	100		0	81.9	57.6-121	()		
2,4-Dimethylphenol	79.07	10	100		0	79.1	57.2-115)		
2,4-Dinitrophenol	74.67	10	100		0	74.7	46.2-124	*****)		
2,4-Dinitrotoluene	42.92	10	50		0	85.8	62.9-126)		
2.6-Dinitrotoluene	43.03	10	50		0	86.1	62.2-128)		
2-Chloronaphthalene	49.17	10	50		0	98.3	57.6-117	, ()		
2-Chlorophenol	76.5	10	100		0	76.5	54.3-115)		
2-Methylnaphthalene	39.39	10	50		0	78.8	51.4-124)		
2-Methylphenol	83.59	10	100		0	83.6	41.5-115	5 ()		
2-Nitroaniline	42.06	10	50		0	84.1	59.3-125	; ()		
2-Nitrophenol	78.36	10	100		0	78.4	57.2-115	5 ()		
3&4-Methylphenol	125	10	150		0	83.3	33.3-115	5 (0		
3.3'-Dichlorobenzidine	36.62	10	50		0	73.2	26.7-118	3 ()		
3-Nitroaniline	36.78	10	50		0	73.6	42.4-118	3 (0		
4,6-Dinitro-2-methylphe		10	100		0	83.8	60.1-129) (0		
4-Bromophenyl phenyl		10	50		0	83.4	62.3-130) (0		
4-Chloro-3-methylphen		10	100		0	85.6	55.5-120)	D		
4-Chloroaniline	37.92	10	50		0	75.8	36.4-116	5	0		
4-Chlorophenyl phenyl	****	10	50		0	87	64-124		0		
4-Nitroaniline	38.27	10	50		0	76.5	51.4-12	5	0		
4-Nitrophenol	85.1	10	100		0	85.1	17-100		0		
Acenaphthene	41.5	10	50		0	83	63.1-12)	0		
Acenaphthylene	41.91	10	50		0	83.8	62.8-118	3	0		
Anthracene	41.2	10	50	·	0	82.4	64.5-128	8	0		
Benz(a)anthracene	43.05	10	50		0	86.1	60.1-12	5	0		
Benzo(a)pyrene	43.98	10	50		0	88	56.7-13	5	0		
Benzo(b)fluoranthene	43.53	10	50		0	87.1	50.5-13	4	0		
Benzo(g,h,i)perylene	43.76	10	50		0	87.5	52.2-13	8	0		
Benzo(k)fluoranthene	43.41	10	50		0	86.8	60-140		0		
Bis(2-chloroethoxy)me	hane 42.3	10	50		0	84.6	63.2-11	9	0		
Bis(2-chloroethyl)ether	42.33	10	50		0	84.7	62.3-11	5	0		
Bis(2-chloroisopropyl)e	ther 43.44	10	50		0	86.9	54.9-11	7	0		
Bis(2-ethylhexyl)phthal	ate 200.1	10	50	88	.66	223	59.1-13	6	0		SE
Butyl benzyl phthalate	46.88	10	50		0	93.8	57.5-13	2	0		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range QC Page: 12 of 23

QC BATCH REPORT

 Work Order:
 0609262

 Project:
 92067647/North of Valsco

Batch ID: 19910	Instrument ID SV-4		Method:	SW8270			
Carbazole	41.36	10	50	0	82.7	65.5-130	0
Chrysene	42.61	10	50	0	85.2	62.4-125	0
Di-n-butyl phthalate	44.59	10	50	0	89.2	64.6-133	0
Di-n-octyl phthalate	47.28	10	50	0	94.6	49.7-152	0
Dibenz(a,h)anthracene	41.81	10	50	0	83.6	49.2-136	0
Dibenzofuran	42.36	10	50	0	84.7	64.3-122	0
Diethyl phthalate	42.03	10	50	0	84.1	62.7-129	0
Dimethyl phthalate	44.25	10	50	0	88.5	63.7-126	0
luoranthene	42.28	10	50	0	84.6	61.2-128	0
Fluorene	41.57	10	50	0	83.1	64.9-121	0
Hexachlorobenzene	43.29	10	50	0	86.6	65.6-126	0
-lexachlorobutadiene	39.5	10	50	0	79	46.1-121	0
Hexachlorocyclopentadiene	39.31	10	50	0	78.6	43.4-120	0
Hexachloroethane	39.98	10	50	0	80	60-115	0
Indeno(1,2,3-cd)pyrene	37.32	10	50	0	74.6	50.3-123	0
isophorone	42.7	10	50	0	85.4	62-121	0
N-Nitrosodi-n-propylamine	44.39	10	50	0	88.8	59.7-116	0
N-Nitrosodiphenylamine	42.6	10	50	0	85.2	65.1-136	0
Naphthalene	40.86	10	50	0	81.7	59.9-115	0
Nitrobenzene	42.37	10	50	0	84.7	59.1-134	0
Pentachlorophenol	79.38	10	100	0	79.4	51.3-134	0
Phenanthrene	42.22	10	50	0	84.4	65.2-122	0
Phenol	77.81	10	100	0	77.8	16-115	0
Pyrene	45.07	10	50	0	90.1	59.7-121	0
Surr: 2,4,6-Tribromophe	nol 77.04	10	100	0	77	39-153	0
Surr: 2-Fluorobiphenyl	78.72	10	100	0	78.7	40-147	0
Surr: 2-Fluorophenol	70.31	10	100	0	70.3	21-110	0
Surr: 4-Terphenyl-d14	81.98	10	100	0	82	39-141	0
Surr: Nitrobenzene-d5	75.88	10	100	0	75.9	37-140	0
Surr: Phenol-d6	77.1	10	100	0	77.1	11-100	0

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 13 of 23

Terracon Consulting Engineers & Scientists **CLIENT:**

QC BATCH REPORT

Work Order: 0609262 92067647/North of Valsco **Project:**

Batch ID: 19910	Instrument ID SV-4		Metho	d: SW8270)			······			
MSD Sample IE): 0609262-01DMSD					U	nits: µg/L	A	nalysis Da	ite: 09/25/	06 18:0
Client ID: MW-1A	Run	id: SV-4_0	60922A	5	Seq	No: 957 :	200	Prep Date: 9/21	/2006	DF: 1	
Analyte	Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
			F0		0	69.1	55.3-118	38.92	11.9	20	
1,2,4-Trichlorobenzene	34.53	<u>10</u>	<u>50</u> 50		0	69.5	55.9-115	39.57	13		
1,2-Dichlorobenzene	34.74		50 50		0	69.8	51.4-115	38.93	10.9		
1,3-Dichlorobenzene	34.91	10	50		0	69.8	53.2-115	39.23	11.7		
1,4-Dichlorobenzene	34.9	10			0	73.1	59.2-116	86.98	17.4		
2,4,5-Trichlorophenol	73.09	10	100		0	74	59.8-120	82,29	10.7	*****	
2,4,6-Trichlorophenol	73.96	10	100				57.6-121	81.86	7.89		
2,4-Dichlorophenol	75.64	10	100		0	75.6	57.2-115	79.07	8.35		
2,4-Dimethylphenol	72.73	10	100		0	70.2	46.2-1124	79.07 74.67	6.14		
2,4-Dinitrophenol	70.22	10	100		0	70.2	62.9-126	42.92			
2,4-Dinitrotoluene	36.97	10	50		0						
2,6-Dinitrotoluene	36.42	10	50		0	72.8	62.2-128 57.6-117	43.03			
2-Chloronaphthalene	43.02	10	50		0	86					
2-Chlorophenol	69.96	10	100		0	70	54.3-115				
2-Methylnaphthalene	35.26	10	50		0	70.5	51.4-124				
2-Methylphenol	75.62	10	100		0	75.6	41.5-115				
2-Nitroaniline	38.31	10	50		0	76.6	59.3-125				
2-Nitrophenol	69.62	10	100		0	69.6	57.2-115				
3&4-Methylphenol	115.5	10	150		0	77	33.3-115				0
3,3'-Dichlorobenzidine	29.01	10	50		0	58	26.7-118				R R
3-Nitroaniline	26.85	10	50		0	53.7	42.4-118				ĸ
4,6-Dinitro-2-methylphe		10	100		0	76.8	60.1-129		·····	······	
4-Bromophenyl phenyl		10	50		0	76.8	62.3-130				
4-Chloro-3-methylphen		10	100		0	78.1	55.5-120				R
4-Chloroaniline	24.29	10	50		0	48.6	36.4-116				ĸ
4-Chlorophenyl phenyl		10	50		0	74.6	64-124	43.48			
4-Nitroaniline	32.33	10	50		0	64.7	51.4-125				
4-Nitrophenol	76.02	10	100		0	76	17-100	85.1			
Acenaphthene	36.5	10	50		0	73	63.1-120				
Acenaphthylene	36.83	10			0	73.7	62.8-118				
Anthracene	36.78	10			0	73.6	64.5-128				
Benz(a)anthracene	37.36	10			0	74.7	60.1-125				
Benzo(a)pyrene	38.93	10			0	77.9	56.7-135				
Benzo(b)fluoranthene	42.67	10			0	85.3	50.5-134				
Benzo(g,h,i)perylene	37.15	10			0	74.3	52.2-138				~
Benzo(k)fluoranthene	34.42	10			0	68.8	60-140				R
Bis(2-chloroethoxy)me		10			0	75.7	63.2-119				
Bis(2-chloroethyl)ether		10			0	77.5	62.3-11				
Bis(2-chloroisopropyl)e		10			0	77.2					
Bis(2-ethylhexyl)phthal	ate 41.25	10			0	82.5					
Butyl benzyl phthalate	40.6	10	50		0	81.2	57.5-13	2 46.88	3 14.	3 20	

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 14 of 23

 Work Order:
 0609262

 Project:
 92067647/North of Valsco

Batch ID: 19910	Instrument ID SV-4		Method:	SW8270					
Carbazole	37.39	10	50	0	74.8	65.5-130	41.36	10.1	20
Chrysene	37.41	10	50	0	74.8	62.4-125	42.61	13	20
Di-n-butyl phthalate	39.14	10	50	0	78.3	64.6-133	44.59	13	20
Di-n-octyl phthalate	40.97	10	50	0	81.9	49.7-152	47.28	14.3	20
Dibenz(a,h)anthracene	37.57	10	50	0	75.1	49.2-136	41.81	10.7	20
Dibenzofuran	37.42	10	50	0	74.8	64.3-122	42.36	12.4	20
Diethyl phthalate	37.67	10	50	0	75.3	62.7-129	42.03	11	20
Dimethyl phthalate	37.53	10	50	0	75.1	63.7-126	44.25	16.4	20
Fluoranthene	36.59	10	50	0	73.2	61.2-128	42.28	14.4	20
Fluorene	37.05	10	50	0	74.1	64.9-121	41.57	11.5	20
Hexachlorobenzene	37.9	10	50	0	75.8	65.6-126	43.29	13.3	20
Hexachlorobutadiene	35.57	10	50	0	71.1	46.1-121	39.5	10.5	20
Hexachlorocyclopentadiene	32.63	10	50	0	65.3	43.4-120	39.31	18.6	20
Hexachloroethane	36.06	10	50	0	72.1	60-115	39.98	10.3	20
Indeno(1,2,3-cd)pyrene	42.48	10	50	0	85	50.3-123	37.32	12.9	20
Isophorone	38.49	10	50	0	77	62-121	42.7	10.4	20
N-Nitrosodi-n-propylamine	39.05	10	50	0	78.1	59.7-116	44.39	12.8	20
N-Nitrosodiphenylamine	37.54	10	50	0	75.1	65.1-136	42.6	12.6	20
Naphthalene	36.57	10	50	0	73.1	59.9-115	40.86	11.1	20
Nitrobenzene	36.57	10	50	0	73.1	59.1-134	42.37	14.7	20
Pentachlorophenol	71.84	10	100	0	71.8	51.3-134	79.38	9.97	20
Phenanthrene	37.19	10	50	0	74.4	65.2-122	42,22	12.7	20
Phenol	70.22	10	100	0	70.2	16-115	77.81	10.3	20
Pyrene	40.02	10	50	0	80	59.7-121	45.07	11.9	20
Surr: 2,4,6-Tribromophen	ol 66.6	10	100	0	66.6	39-153	77.04	14.5	20
Surr: 2-Fluorobiphenyl	65.6	10	100	0	65.6	40-147	78.72	18.2	20
Surr: 2-Fluorophenol	61.47	10	100	0	61.5	21-110	70.31	13.4	20
Surr: 4-Terphenyl-d14	70.23	10	100	0	70.2	39-141	81.98	15.4	20
Surr: Nitrobenzene-d5	65.59	10	100	0	65.6	37-140	75.88	14.5	20
Surr: Phenol-d6	67.34	10	100	0	67.3	11-100	77.1	13.5	20
The following samples were analyzed in this batch:			9262-01D 9262-04D		262-02D 262-05D	06092	262-03D		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 15 of 23

Terracon Consulting Engineers & Scientists **CLIENT:**

0609262 Work Order:

92067647/North of Valsco **Project:**

QC BATCH REPORT

									Analysis D	ate . 00120	106 13-04
BLK Sample ID: VBI	LKW-060920						nits: µg/L		Analysis D		/00 13.04
lient ID:		Run IC): VOA1_(60920A		SeqNo: 9534	79	Prep Date:		DF: 1	
	D	aault	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
nalyte	ĸ	esult		SFILVA		70120					
,1,1-Trichloroethane		U	5.0					*****			
,1,2,2-Tetrachloroethane		U	5.0								
,1,2-Trichloroethane		<u> </u>	5.0								
,1-Dichloroethane		U	5.0								
I,1-Dichloroethene		<u> </u>	5.0								
1,2,4-Trimethylbenzene		U	5.0								
1,2-Dichloroethane		U	5.0								
1,2-Dichloropropane		U	5.0								
1,3,5-Trimethylbenzene		U	5.0								
2-Butanone		U	10								
2-Hexanone		U	10								
4-Methyl-2-pentanone		U	10								
Acetone		U	10							·····	
Benzene		U	5.0								
Bromodichloromethane		U	5.0								
Bromoform		U	5.0								
Bromomethane		U	5.0								
Carbon disulfide		U	10								
Carbon tetrachloride		U	5.0								
Chlorobenzene		U	5.0								
Chloroethane		U	5.0								
Chloroform		U	5.0								
		U	5.0								
Chloromethane		U	5.0								
cis-1,2-Dichloroethene		Ű	5.0								
cis-1,3-Dichloropropene		<u>U</u>	5.0								
Dibromochloromethane		Ŭ	5.0								
Ethylbenzene		<u>U</u>	10								
m,p-Xylene		U	5.0								
Methyl tert-butyl ether			10						······································		
Methylene chloride		U	5.0								
n-Butylbenzene		<u> </u>	*****								
Naphthalene		U	5.0								
o-Xylene		<u> </u>	5.0								
sec-Butylbenzene		U	5.0								
Styrene		<u> </u>	5.0								
Tetrachloroethene		U	5.0								
Toluene		<u> </u>	5.0						,		
trans-1,2-Dichloroethene		U	5.0								
trans-1,3-Dichloropropene		U	5.0								
Trichloroethene		U	5.0	0							

ND - Not Detected at the Reporting Limit

U - Analyzed for but not detected

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

E - Value above quantitation range

QC Page: 16 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262

QC BATCH REPORT

 Work Order:
 0609262

 Project:
 92067647/North of Valsco

Batch ID: R41866	Instrument	ID VOA1		Method:	SW8260				
Vinyl chloride		U	2.0						
Xylenes, Total		U	15						
Surr: 1,2-Dichloroeth	ane-d4	51	5.0	50	0	102	70-125	0	
Surr: 4-Bromofluorol		55.09	5.0	50	0	110	72.4-125	0	
Surr: Dibromofluoror		54.6	5.0	50	0	109	71.2-125	0	
Surr: Toluene-d8		55.29	5.0	50	0	111	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 17 of 23

Work Order: 0609262

Project: 92067647/North of Valsco

Method: SW8260 Instrument ID VOA1 Batch ID: R41866 Analysis Date: 09/20/06 13:32 Units: µg/L Sample ID: VLCSW-060920 LCS DF: 1 SeqNo: 953480 Prep Date: Run ID: VOA1_060920A Client ID: RPD RPD Ref Control SPK Ref Limit Value Limit Value Qual %RPD %REC SPK Val Result MQL Analyte 0 0 103 79.6-120 50 5.0 1,1,1-Trichloroethane 51.6 0 78.9-121 50 0 101 50.32 5.0 1,1,2,2-Tetrachloroethane 0 0 104 80-120 50 51.78 5.0 1,1,2-Trichloroethane 0 0 74.2-122 50 97.9 5.0 1,1-Dichloroethane 48.95 75.8-122 0 5.0 50 0 101 50.35 1,1-Dichloroethene 0 0 98.6 80-120 49.32 5.0 50 1,2,4-Trimethylbenzene 0 5.0 50 0 102 78.8-120 50.83 1,2-Dichloroethane 80-120 0 0 99.6 50 49.79 5.0 1,2-Dichloropropane 0 80-120 0 98.4 50 49.2 5.0 1,3,5-Trimethylbenzene 0 10 100 0 91.9 69.2-131 91.89 2-Butanone 59.1-135 0 0 108 10 100 108 2-Hexanone 0 0 104 71.6-124 100 103.9 10 4-Methyl-2-pentanone 0 60.1-141 0 103 103.1 10 100 Acetone 0 80-120 5.0 50 0 98.7 49.36 Benzene 50 0 105 80-120 0 5.0 Bromodichloromethane 52.27 0 50 0 99 78.1-120 5.0 49.52 Bromoform 0 52,8-147 0 87.8 5.0 50 43.9 Bromomethane 0 100 Ö 87.6 78.8-120 10 87.6 Carbon disulfide 0 50 0 105 76.8-120 5.0 52.45 Carbon tetrachloride 0 102 80-120 0 50 51.17 5.0 Chlorobenzene 0 0 101 74.2-120 5.0 50 50.56 Chloroethane 0 80-120 50 0 102 50.76 5.0 Chloroform 0 0 99.8 63.5-133 50 49.89 5.0 Chloromethane 0 101 80-120 50 0 cis-1,2-Dichloroethene 50.43 5.0 0 80-120 50 0 101 50.42 5.0 cis-1,3-Dichloropropene 0 107 80-120 0 50 53.63 5.0 Dibromochloromethane 0 50 0 100 80-120 5.0 50.06 Ethylbenzene 103 80-120 0 0 102.8 10 100 m,p-Xylene 0 50 0 102 75.8-123 5.0 51.16 Methyl tert-butyl ether 0 0 101 74.7~120 10 50 Methylene chloride 50.28 0 80-120 0 99.3 50 49.65 5.0 n-Butylbenzene 50 0 0 97.6 71.4-124 48.79 5.0 Naphthalene 0 50 0 104 80-120 5.0 52.02 o-Xylene 0 80-120 0 97.6 50 5.0 48.79 sec-Butylbenzene 0 80-120 50 0 103 51.6 5.0 Styrene 0 5.0 50 0 105 80-120 52.46 Tetrachloroethene 0 102 80-120 0 50 50.83 5.0 Toluene 0 0 96.8 75.9-122 50 trans-1,2-Dichloroethene 48.38 5.0 0 80-120 52.09 5.0 50 0 104 trans-1,3-Dichloropropene 0 50 0 103 80-120 51.48 5.0 Trichloroethene

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected
 E - Value above quantitation range

P - Dual Column results percent difference > 40%

R - RPD outside accepted recovery limits

QC Page: 18 of 23

CLIENT:Terracon Consulting Engineers & ScientistsWork Order:0609262Project:92067647/North of Valsco

Batch ID: R41866	Instrument	ID VOA1		Method:	SW8260				
Vinyl chloride		48.18	2.0	50	0	96.4	76.2-121	0	
Xylenes, Total		154.8	15	150	0	103	80-120	0	
Surr: 1,2-Dichloroeth	ane-d4	50.89	5.0	50	0	102	70-125	0	
Surr: 4-Bromofluorob	enzene	54.97	5.0	50	0	110	72.4-125	0	
Surr: Dibromofluorom	nethane	53.9	5.0	50	0	108	71.2-125	0	
Surr: Toluene-d8		55.17	5.0	50	0	110	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 19 of 23

Terracon Consulting Engineers & Scientists CLIENT:

0609262 Work Order:

92067647/North of Valsco **Project:**

Method: SW8260 Batch ID: R41866 Instrument ID VOA1 Analysis Date: 09/20/06 14:55 Units: µg/L Sample ID: 0609262-01AMS MS DF: 1 Prep Date: SeqNo: 953482 Run ID: VOA1_060920A Client ID: MW-1A RPD RPD Ref Control SPK Ref Limit Value Limit Value %RPD Qual %REC SPK Val MQL Analyte Result 0 0 79.6-120 91.7 45.87 5.0 50 1,1,1-Trichloroethane 0 96.9 78.9-121 50 0 48.47 5.0 1,1,2,2-Tetrachloroethane 96.7 80-120 0 50 0 48.33 5.0 1,1,2-Trichloroethane 0 50 0 93.6 74.2-122 5.0 46.82 1,1-Dichloroethane 75.8-122 0 0 87.3 43.65 5.0 50 1,1-Dichloroethene 0 80-120 5.0 50 0 94.6 47.28 1,2,4-Trimethylbenzene 0 0 97.6 78.8-120 48.82 5.0 50 1,2-Dichloroethane 0 50 0 95.9 80-120 47.93 5.0 1,2-Dichloropropane 0 0 91.8 80-120 50 5.0 1,3,5-Trimethylbenzene 45.88 0 92 69.2-131 0 91.98 10 100 2-Butanone 0 100 Ö 95 59.1-135 94.98 10 2-Hexanone 0 0 96.1 71.6-124 10 100 96.1 4-Methyl-2-pentanone 0 0 60.1-141 88.6 100 88.6 10 Acetone 0 80-120 0 94.8 47.42 5.0 50 Benzene 0 5.0 50 0 101 80-120 50.29 Bromodichloromethane 93.6 78,1-120 0 50 0 5.0 46.79 Bromoform 0 0 91.9 52.8-147 50 45.93 5.0 Bromomethane 0 78.8-120 10 100 0 113 112.5 Carbon disulfide o 84.1 76.8-120 0 5.0 50 42.05 Carbon tetrachloride 80-120 0 50 0 98.1 5.0 49.07 Chlorobenzene 0 74.2-120 50 0 93.8 46.89 5.0 Chloroethane 98 0 80-120 50 0 5.0 48.98 Chioroform 96.9 63,5-133 0 50 0 5.0 48.45 Chloromethane 0 80-120 50 0 98.6 5.0 49.3 cis-1.2-Dichloroethene 0 98.3 80-120 0 49.16 5.0 50 cis-1,3-Dichloropropene 0 50 0 104 80-120 5.0 52.05 Dibromochloromethane 80-120 0 95.1 50 0 47.53 5.0 Ethylbenzene 0 0 95.5 80-120 10 100 95.51 m,p-Xylene 0 0 98.2 75.8-123 5.0 50 49.08 Methyl tert-butyl ether 0 0 97.8 74,7-120 50 48.89 10 Methylene chloride 80-120 0 0 83 50 5.0 41.5 n-Butylbenzene 0 5.0 50 0 91.8 71.4 124 45.88 Naphthalene 0 80-120 0 5.0 50 97.4 48.69 o-Xylene 0 0 82.7 80-120 5.0 50 41.33

ND - Not Detected at the Reporting Limit

sec-Butylbenzene

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Styrene

Toluene

S - Spike Recovery outside accepted recovery limits

0

0

0

0

0

5.234

98.2

89.5

96.6

92.7

102

92.6

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

5.0

5.0

5.0

5.0

5.0

5.0

49.1

44.77

48.31

46.34

50.95

51.55

50

50

50

50

50

50

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range

0

0

0

0

0

0

80-120

80-120

80-120

75.9-122

80-120

80-120

QC Page: 20 of 23

QC BATCH REPORT

Work Order:	0609262
Project:	92067647/North of Valsco

5								
Batch ID: R41866	Instrument ID VOA1		Method:	SW8260				
Vinyl chloride	41.5	2.0	50	0	83	76.2-121	0	
Xylenes, Total	144.2	15	150	0	96.1	80-120	0	
Surr: 1,2-Dichloroethane-	14 50.21	5.0	50	0	100	70-125	0	
Surr: 4-Bromofluorobenze		5.0	50	0	108	72.4-125	0	
Surr: Dibromofluorometha		5.0	50	0	107	71.2-125	0	
Surr: Toluene-d8	55.5	5.0	50	0	111	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 21 of 23

QC BATCH REPORT

Work Order: 0609262

Project: 92067647/North of Valsco

Batch ID: R41866		Instrument ID VC	DA1		Metho	d: SW826	0						
MSD Samp	le ID: (609262-01AMSD						Ur	nits: µg/L	A	nalysis Da	te: 09/20/	06 15:22
Client ID: MW-1A			D: VOA1_0	D: VOA1_060920A			No: 9534	183 I	Prep Date:		DF: 1		
			-			SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte			Result	MQL	SPK Val								
1,1,1-Trichloroethan	e		45.53	5.0	50		0	91.1	79.6-120	45.87	0.741	20	
1,1,2,2-Tetrachloroe	thane		48.24	5.0	50		0	96.5	78.9-121	48.47	0.483	20	
1,1,2-Trichloroethan	e		49.76	5.0	50		0	99.5	80-120	48.33	2.91	20	
1,1-Dichloroethane			47.1	5.0	50		0	94.2	74.2-122	46.82	0.614	20	
1,1-Dichloroethene			41.78	5.0	50		0	83.6	75.8-122	43.65	4.37	20	
1,2,4-Trimethylbenz	ene		45.67	5.0	50		0	91.3	80-120	47.28	3.47	20	
1,2-Dichloroethane			49.51	5.0	50		0	99	78.8-120	48.82	1.41	20	
1,2-Dichloropropane	9		48.3	5.0	50		0	96.6	80-120	47.93		20	
1,3,5-Trimethylbenz	ene		44.74	5.0	50		0	89.5	80-120	45.88	2.52	20	
2-Butanone			89.51	10	100		0	89.5	69.2-131	91.98	2.72	20	
2-Hexanone			93.05	10	100		0	93.1	59.1-135	94.98	2.05	20	
4-Methyl-2-pentano	ne		96.07	10	100		0	96.1	71.6-124		0.0275	20	
Acetone			94.81	10	100		0	94.8	60.1-141	88.6		20	
Benzene			47.62	5.0	50		0	95.2	80-120	47.42		20	
Bromodichlorometh	nane		51.14	5.0	50		0	102	80-120	50.29		20	
Bromoform			47.58	5.0	50		0	95.2	78.1-120			20	
Bromomethane			48.89	5.0	50		0	97.8	52.8-147				
Carbon disulfide			113.2	10	100		0	113	78.8-120			20	
Carbon tetrachlorid	e		40.45	5.0	50		0	80.9	76.8-120				
Chlorobenzene			48.9	5.0	50		0	97.8	80-120	49.07			
Chloroethane			46.95	5.0	50		0	93.9	74.2-120) 46.89			
Chloroform			49.42	5.0	50		0	98.8	80-120	48.98			
Chloromethane			49.23	5.0	50		0	98.5	63.5-133				
cis-1,2-Dichloroeth	ene		49.29	5.0	50		0	98.6	80-120	49.3			
cis-1,3-Dichloropro			49.75	5.0	50		0	99.5	80-120	49.16			
Dibromochloromet			52.07	5.0	50		0	104	80-120	52.05	,		
Ethylbenzene			47.19	5.0	50		0	94.4	80-120	47.53			
m,p-Xylene			93.39	10	100		0	93.4	80-120	95.5			
Methyl tert-butyl et	her		50.13	5.0	50		0	100	75.8-12				
Methylene chloride			48.69	10	50		0	97.4					
n-Butylbenzene			40.76	5.0	50		0	81.5					
Naphthalene			47.77	5.0	50	A	0	95.5					
o-Xylene			48.95	5.0	50		0	97.9					
sec-Butylbenzene			39.76	5.0	50		0	79.5					
Styrene			49.03	5.0	50		0	98.1					
Tetrachloroethene	ł		42.49	5.0	50		0	85					
Toluene			48.61	5.0	50		0	97.2	80-120				
trans-1,2-Dichloro	ethene		47.76	5.0	50		0	95.5	75.9-12	2 46.3			
trans-1,3-Dichloro		e	51.27	5.0	50		0	103	80-120	50.9	5 0.62		
Trichloroethene	• •		52.61	5.0	50	5	.234	94.8	80-120) 51.5	5 2.0	4 20	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detectedE - Value above quantitation range

OC Boro: 22 o

QC Page: 22 of 23

QC BATCH REPORT

Work Order:	0609262
Project:	92067647/North of Valsco

Batch ID: R41866	Instrument	ID VOA1		Method:	SW8260					
Vinyl chloride		42.65	2.0	50	0	85.3	76.2-121	41.5	2.73	20
Xylenes, Total		142.3	15	150	0	94.9	80-120	144.2	1.3	20
Surr: 1,2-Dichloroeth	ane-d4	50.05	5.0	50	0	100	70-125	50.21	0.317	20
Surr: 4-Bromofluorot		53.63	5.0	50	0	107	72.4-125	53.98	0.659	20
Surr: Dibromofluoror		54.15	5.0	50	0	108	71.2-125	53.48	1.24	20
Surr: Toluene-d8		54.61	5.0	50	0	109	75-125	55.5	1.61	20
The following samples were analyzed in this batch:		1	9262-01A 9262-04A	••••	62-02A 62-05A	060926	2-03A			

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 23 of 23

E
STR B

10450 Stancliff Rd. #210 Houston, Texas 77099 (Tel) 281.530.5656 (Fax) 281.530.5887

]

THIN & ANNUAL IN THINK

Page 1 of 1

3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185]

86

AV11441 () 14414	and the state of the		e-Lab Proje	e-Lab Project Manager,	e-Lab Work Order #: () 40263-	NIGGLED
	Customer Information		Project Information		Parameter/Method Request for Analysis	st for Analysis
Purchase Order		Project Name	North mof Valsco		A VOC (8260)	
Work Order		Project Number	92007647		B TPH (TX1005)	
Gampany Name	HBC Terracon	Bill To Company	HBC Terracon		C SVOC (8270) TCL	
Sand Report To	Prased Rajulu	Invoice Attn	Prasad Rajulu		Di Metals (6020) RCRA	
	11555 Clay Road		11555 Clay Road		B. Moisture	ογο γιαμά Αγγαλικό στου ποιτοτικό φάλαλοποιολο και το ο Αγίο συτοι του Γυγράφου στο το Ο Ο Ολλού Ο ΟΝ Γου Βου Απου
Address	Suite 100	Address	Suite 100			
City/State/Zip	Houston, TX 77043	City/State/Zip	Houston, TX 77043		đ	
Phone	(713) 690-8989	Phone	(713) 690-8989			
Fax	(713) 690-8787	Fax	(713) 690-8787			Andrea de la Angelange Angelange mengemeng mengemeng berden yang berden yang de 1999 tahan se sebahan se sebaha
e-Weil Address		e-Mail Address		(
Vo.	Semble Description	Date	Time Matrix Pres	# Boltles	A B C D E F G	H I H HOR
	MW - 1A	a)19/06 11	1120 H20 H41	5	X X X	
04	R-WW		1235			
	M W - 3		14.25			
4	т- 4 М М - 4		1535			
40	Dup-1	1				
9	ms/ms0		1130 1 1	->		
Ł						
a a						
2 2				***		
Sampler(s) Please Print & Sign Sect. IM 94		Shipment N	lethod Required Turnaround	LUL .	Cother 2 WK Days 24 Hour	Results Due Date
Reinquished by:	Date: 1	TIMP S	Received by:		5 Day TAT	
Relinquished by:		Time:	pecofved by (aboratory); A Dull	PUS5	a Laist Aniaytical Cooler Termo QO Paoteges (Check One Box Below) Gooler ID D D D D D D D D D D D D D D D D D D	K One Box Below) C V TRRP CheckList
ogged by (Laboratory).	01. Data:	Time, Che	haoleéothy (Ildyjoratory)) •••••••••••••••••••••••••••••••••••		Contraction Contraction Contraction Contraction Contraction Contraction Contraction	IC/Raw Data 🔲 TRIRP Laval IV 46/CLP
Preservative Key	Preservative Key: 1:HCI 2:HNO, 3:HSO, 4:NaOH 5:Na,S20.	60H 5+N8252Us	6-NaHSO4 /-Cher 8-4 C 9-0000	Conce S		generative state and an and and

Copyright 2004 by e-Lab Analytical, Inc.

ote: 1. Any changes must be made in writing once samples and COC Form have been submitted to e-Lab Analytical, Inc. 2. Unless otherwise agreed in a formal contract, services provided by e-Lab Analytical, Inc. are expressly limited to the terms and conditions stated on the reverse.

Sample Receipt Checklist

Client Name HBC TERRACON		Date/Time Received:	<u>9/20/2006 7 56:00 AM</u>
Work Order Number 0609262		Received by: RSZ	• • •
Checklist completed by Market 9/20	5 (0-	Reviewed by	1 al 21/66
Matrix: W Carrier name	<u>Client</u>		
Shipping container/cooler in good condition?	Yes 🗹	No 🗔 Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗌	No Not Present	
Custody seals infact on sample bottles?	Yes 🗌	No 🗌 Not Present	\mathbf{V}
Chain of custody present?	Yes 🗹	No	
Chain of custody signed when relinquished and received?	Yes 🔽	No	
Chain of custody agrees with sample labels?	Yes 🗹	No []	
Samples in proper container/bottle?	Yes 🗹	No	
Sample containers intact?	Yes 🗹	No	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗔	
All samples received within holding time?	Yes 🗸	No	
Container/Temp Blank temperature in compliance?	Yes 🗸	No	
Temperature(s)/Themometer(s):	<u>2.4c, 2.9c</u>	002	
Water - VOA vials have zero headspace?	Yes 🗹	No . No VOA vials s	ubmitted
Water - pH acceptable upon receipt?	Yes 📝	No N/A	
Adjusted?	C	Checked by KVC	
Login Notes: Two sets of trip blanks were logged in without a	analysis.		
Client contacted Date contacted:		Person contac	led
Contacted by: Regarding:			
Comments:	and the function of the second s		
· · · · · · · · · · · · · · · · · · ·			
and the manufacture of the manufacture of the second			
Corrective Action			
		nya wakababaha jati jampi malijini sama madan kansi yangi katang kana di maka matang katang termu	and an a set of the set

10450 Stancliff Rd, Suite 210 Houston, Texas 77099-4338 281-530-5656 Fax 281-530-5887

September 27, 2006

ŧ

Prasad Rajulu Terracon Consulting Engineers & Scientists 11555 Clay Road Suite 100 Houston, TX 77043

Tel: (713) 690-8989 Fax: (713) 690-8787

Re: 9206747/North Velasco

Work Order : 0609302

Dear Prasad Rajulu,

e-Lab Analytical, Inc. received 3 samples on 9/20/2006 5:45:00 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by e-Lab Analytical, Inc. and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by e-Lab Analytical, Inc. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 54.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Jeffrey L Croston

Electronically approved by: Odette E. Elliston Jeffrey L Croston Project Manager

Certificate No: T104704231-06-TX

CLIENT:Terracon Consulting Engineers & ScientistsTRRProject:9206747/North VelascoPaWork Order:0609302

TRRP Laboratory Data Package Cover Page

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation:
- R2 Sample identification cross-reference
- R3 Test reports (analytical data sheets) for each environmental sample that includes:a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 a) Calculated recovery (%R), and
 b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
- a) LCS spiking amounts,
 b) Calculated %R for each analyte, and
 c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;?
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [NA] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jeffrey L Croston

Jeffrey L Croston Project Manager

			ecklist: Reportable Data					
Labo	orator	y Name: e-Lab Analytical, Inc.	LRC Date: 09/27/2006					
Proje	ect N	ame: N Velasco	Laboratory Job Number: 0609302					
Revi	ewer	Name: Jeff Croston	Prep Batch Number(s): 19921, 19923, 1994	41, R41	972	and	R420	53
# ¹	A ²	Description		Yes	No	NA^3	NR⁴	ER# ⁵
		CHAIN-OF-CUSTODY (C-O-C)						
	<u>,</u>	1) Did samples meet the laboratory's standard conditions	of sample acceptability upon receipt?	X	10120120012	200200900	ASSAULT OF A	12210/24254
		2) Were all departures from standard conditions described		$\frac{1}{x}$				İ
D 2	<u> </u>			Sitti	na in		104445340	Section:
R2	01	SAMPLE AND QUALITY CONTROL (QC) IDENTI 1) Are all field sample ID numbers cross-referenced to the		X	20-02034) 	UNICOD >	ittiittiittii	Onivier
		2) Are all laboratory ID numbers cross-referenced to the	corresponding OC data?	X				
R3	OI	TEST REPORTS	corresponding QC data:			- Siedij		àinn
K.J		1) Were all samples prepared and analyzed within holdin	g times?	X	1999 1997 19	a geologia (a)	314246414	
		 Were all samples prepared and analyzed within holding Other than those results < MQL, were all other raw values 	g times: always brackated by calibration standards?	$\frac{1}{X}$			<u> </u>	
		3) Were calculations checked by a peer or supervisor?	andes officketed by canoration standards.	\mathbf{x}				
	4) Were all analyte identifications checked by a peer or supervisor?							
	5) Were sample quantitation limits reported for all analytes not detected?					<u> </u>	ł	
		6) Were all results for soil and sediment samples reported on a dry weight basis?						
	6) Were all results for soil and sediment samples reported on a dry weight basis?7) Was % moisture (or solids) reported for all soil and sediment samples?					X X	\vdash	1
	7) Was % moisture (or solids) reported for all soli and sediment samples?8) If required for the project, TICs reported?					X		†
n /	<u> </u>						-21/25-	NG USA
R4	0	0 SURROGATE RECOVERY DATA 1) Were surrogates added prior to extraction?					NZINIZZI	554,475
		2) Were surrogate percent recoveries in all samples within the laboratory QC limits?					┼───	+
De		2) were surrogate percent recoveries in all samples with TEST REPORTS/SUMMMARY FORMS FOR BLAN	IL CAMPLES	X	2012012161	21681	120329	-
R5	01		IN SAMIFLES	X		Hindigo	1.00505650	- district
		1) Were appropriate type(s) of blanks analyzed?		$\frac{\Lambda}{X}$				
		2) Were blanks analyzed at the appropriate frequency?	al managed including preparation and if	$+\hat{\mathbf{x}}$	<u> </u>		+	
		3) Were method blanks taken through the entire analytic	ar process, meaning preparation and, in					
		applicable, cleanup procedures?		x	╂──			
n		4) Were blank concentrations < MQL?			9 1910/63	ige Acades	10110	i Arishi
<u>R6</u>	OI	LABORATORY CONTROL SAMPLES (LCS):		x	1 69650		100000	1. Secondar
		 Were all COCs included in the LCS? Was each LCS taken through the entire analytical processing of the entire ana	adum including man and cleanin stans?	$+\hat{\mathbf{x}}$	<u> </u>		1	
			zoure, including prep and cleanup steps:	$\frac{x}{x}$	†	┼─		
		3) Were LCSs analyzed at the required frequency?4) Were LCS (and LCSD, if applicable) %Rs within the local sector of the sect	laboratory OC limits?	$\frac{\pi}{x}$	+	+	+	+
1		5) Does the detectability data document the laboratory's c	aboratory QC minus:	$\frac{\Lambda}{X}$		+		+
		used to calculate the SQLs?	separative to detect the COCs at the MDE					
		6) Was the LCSD RPD within QC limits?		+x	╈	+	+	
R 7		MATRIX SPIKE (MS) AND MATRIX SPIKE DUPI	ICATE (MSD) DATA	Nazak			19098	12016
K 7	OI	1) Were the project/method specified analytes included in	a the MS and MSD?	X	3 3/14/21	1 55655		
		 Were MS/MSD analyzed at the appropriate frequency 			<u> </u>	†	†	+
		3) Were MS (and MSD, if applicable) %Rs within the la	horatory OC limits?	+	x	1	1	$\frac{1}{1}$
		4) Were MS/MSD RPDs within laboratory QC limits?			X	1	\mathbf{I}	$+\hat{1}$
R8	OI	ANALYTICAL DUPLICATE DATA		6.58 i 20	a eloke	t giogiù	11.28	
no	101	1) Were appropriate analytical duplicates analyzed for each	ach matrix?	X	19050			1
		2) Were analytical duplicates analyzed at the appropriate		X	†	†		+
		3) Were RPDs or relative standard deviations within the		T X	1	1	1	+
R9	IOI	METHOD QUANTITATION LIMITS (MQLS):		Nish.		S CREE	1	10000
	101	1) Are the MQLs for each method analyte listed and incl	uded in the laboratory data package?	X	1		1	1
		2) Do the MQLs correspond to the concentration of the 1	lowest non-zero calibration standard?	X	1	\mathbf{T}		1
		3) Are unadjusted MQLs included in the laboratory data		$\frac{x}{x}$	1	1	+	1
D10	IOI	OTHER PROBLEMS/ANOMALIES	pravnage :					
M10	'l'	1) Are all known problems/anomalies/special conditions i	noted in this LRC and FR?		94,920 	<u>a estat</u>		.
		2) Were all necessary corrective actions performed for th		$\frac{\Lambda}{X}$	+	1	+	+
	Į			$-\frac{x}{x}$	+	+	+	
	1	3) If requested, is the justification for elevated SQLs doc	amanau:	- <u>+</u> ^	+	+	+	

Items identified by the letter "R" should be included in the laboratory data package submitted in o the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
 O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 D = Not applicable;

4 5 NR = Not Reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

	<u> </u>	Laboratory Review Chec						
Lab	orator		2 Date: 09/27/2006					
Proj	ject N	lame: N Velasco Labo	oratory Job Number: 0609302					
Rev	viewei	r Name: Jeff Croston Prep	Batch Number(s): 19921, 19923, 19941,	R41	972 a	nd R4	42053	
$\#^{1}$	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
	ويستعمده	INITIAL CALIBRATION (ICAL)						- Mensker
01	<u> </u>	1) Were response factors (RFs) and/or relative response factors	s (RRFs) for each analyte within the OC	Х	2710-010-022			1
		limits?						
		2) Were percent RSDs or correlation coefficient criteria met?		Х				
		3) Was the number of standards recommended in the method	used for all analytes?	X				
		4) Were all points generated between the lowest and highest st	tandard used to calculate the curve?	X				1
		5) Are ICAL data available for all instruments used?		X				1
		6) Has the initial calibration curve been verified using an appr	ropriate second source standard?	X				
S2	OI	INITIAL AND CONTINUING CALIBRATION VERIF	ICATION (ICCV AND CCV) AND		12221.0		10000	
02		1) Was the CCV analyzed at the method-required frequency?	ICATION RECT MAD CCT / MAD	X	orbai cer piven	ann agnadoan		200 00700000
	2) Were percent differences for each analyte within the method-required QC limits?							1
	2) Were percent differences for each analyte within the method-required QC limits?3) Was the ICAL curve verified for each analyte?							+
	3) Was the ICAL curve verified for each analyte?4) Was the absolute value of the analyte concentration in the inorganic CCB < MDL?					X		
S3						<u> </u>	regipter/	
33	O MASS SPECTRAL TUNING: 1) Was the appropriate compound for the method used for tuning?					20-23-04-22	05039-07882	all hootstop
	-	2) Were ion abundance data within the method-required QC limits?						+
04								
<u>S4</u>	0	Were IS area counts and retention times within the method-required QC limits?						100 910000
00							101420-00220	16) 6.595%
<u>S5</u>	OI	RAW DATA (NELAC SECTION 1 AFPENDIX A GL	used by an analyst?	x	Samo		0.0000000000	
		1) Were the raw data (e.g., chromatograms, spectral data) revi		$\frac{\Lambda}{X}$				
<u> </u>		2) Were data associated with manual integrations flagged on t	ne raw data?	<u>^</u>	1	calization		
S6	0	DUAL COLUMN CONFIRMATION	1000		62263	X	0120.0320	<u>- 22 97 97 97 97 97 97 97 97 97 97 97 97 97 </u>
	1	Did dual column confirmation results meet the method-require		135711	1000000000		2432-2543	
<u>S7</u>	0	TENTATIVELY IDENTIFIED COMPOUNDS (TICS):	1 is at the summer whether the sheet	1193363		X		
		If TICs were requested, were the mass spectra and TIC data s	anject to appropriate checks?		a harrotschafte			ster ontroster.
<u>S8</u>	<u> </u> I	INTERFERENCE CHECK SAMPLE (ICS) RESULTS:		X				
		Were percent recoveries within method QC limits?		<u> </u>		annet mar		22 943304
S9	I	SERIAL DILUTIONS, POST DIGESTION SPIKES,	AND METHOD OF STANDARD	Telecole	5 (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	5156709		. 1988 (1988) (1988) (1988) 1988 (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1 1988) (1
		Were percent differences, recoveries, and the linearity within	the QC limits specified in the method?	X	1	100000X-0-2		(11) (11)
<u>S10</u>	OI	PROFICIENCY TEST REPORTS:	C1 0	NOR NO				
	<u> </u>	Are proficiency testing or inter-laboratory comparison results	on file?	X	5	anananana a	i zzeniecz	
<u>S11</u>	OI	METHOD DETECTION LIMIT (MDL) STUDIES		v				
	1	1) Was a MDL study performed for each reported analyte?	N 02 0	X	+			_
		2) Is the MDL either adjusted or supported by the analysis of	DCSs?	X		der state for		
S12	2 <u>01</u>	STANDARDS DOCUMENTATION	• 1 C 1	NSER.	10170	000000000		200 000000
		Are all standards used in the analyses NIST-traceable or obtain		X	a <u>anama</u> a	0.000		
\$13	OI	COMPOUND/ANALYTE IDENTIFICATION PROCEDU	URES		101005-00X	OLCHARZ.		<u> 1999</u>
L		Are the procedures for compound/analyte identification docur		X				ANT AND A
<u>S14</u>	IO 4	DEMONSTRATION OF ANALYST COMPETENCY (D					284352	10 2280
1		1) Was DOC conducted consistent with NELAC 5C or ISO/II		X	1	 		
<u> </u>		2) Is documentation of the analyst's competency up-to-date as		X				and statem
S15	5 OI	VERIFICATION/VALIDATION DOCUMENTATION F	OR METHODS			a Vanadarooko		<u> </u>
		Are all the methods used to generate the data documented,	verified, and validated, where applicable,	X		1		
		(NELAC 5.10.2 or ISO/IEC 17025 Section 5.4.5)?			_			
S16	SOI	LABORATORY STANDARD OPERATING PROCEDU	RES (SOPS):	100000000				
		Are laboratory SOPs current and on file for each method perf	formed?	X	1		1	

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable). NA = Not applicable. NR = Not Reviewed. 1

2

3

4

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5

		Review Checklist: Exception Report			
Laborate	ory Name: e-Lab Analytical, Inc.	LRC Date: 09/27/2006			
Project Name: N Velasco Reviewer Name: Jeff Croston		Laboratory Job Number: 0609302			
		Prep Batch Number(s): 19921, 19923, 19941, R41972 and R42053			
ER # ¹	DESCRIPTION				
1	Batch's R41972 and R42053 Volatil	es MS/MSD and RPD were unrelated sample.			

1 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

Date: September 27, 2006

CLIENT:	Terracon Consulting Engineers & Scientists
Project:	9206747/North Velasco
Work Order:	0609302

Work Order Sample Summary

Lab Samp ID Client	Sample ID Mat	trix <u>Tag Number</u>	Collection Date	Date Received	Hold
0609302-01 MW-6	Wat	er			
0609302-02 MW-5	Wat	er	9/20/2006 16:45	9/20/2006 17:45	
0609302-03 Trip Bl	ank Wat	er	9/20/2006 16:45	9/20/2006 17:45	\checkmark

.....

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	MW-6
Work Order:	0609302	Collection Date:	9/20/2006 3:50:00 PM
Project:	9206747/North Velasco		
Lab ID:	0609302-01	Matrix:	WATER
		******	Dilution

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TEXAS TPH		Metl	nod: TX1005		Prep: TX	1005PR / 9/22/06	Analyst: JFT
nC6 to nC12	U		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28	U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35	υ		0.20	0.50	mg/L	1	9/26/2006
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorobiphenyl	91.0			70-130	%REC	1	9/26/2006
Surr: Trifluoromethyl benzene	89.4			70-130	%REC	1	9/26/2006
MERCURY, TOTAL		Met	hod: SW7470		Prep: SV	V7470 / 9/21/06	Analyst: JCJ
Mercury	U		0.000042	0.000200	mg/L	1	9/22/2006
ICP METALS, TOTAL		Met	hod: SW6020		Prep: SV	V3010A / 9/22/06	Analyst: ALR
Arsenic	0.00401	J	0.0018	0.00500	mg/L	1	9/22/2006
Barium	0.0610		0.00060	0.00500	mg/L	1	9/22/2006
Cadmium	U		0.00015	0.00100	mg/L	1	9/22/2006
Chromium	0.00526	;	0.00050	0.00200	mg/L	1	9/22/2006
Lead	0.0139)	0.00020	0.00500	mg/L	1	9/22/2006
Selenium	0.00170	J	0.0017	0.00500	mg/L	1	9/22/2006
Silver	U		0.00020	0.00500	mg/L	1	9/22/2006
TCL SEMIVOLATILE ORGANICS		Met	thod: SW8270		Prep: S	W3510 / 9/22/06	Analyst: HV
1.2.4-Trichlorobenzene	U	I	0.00050	0.010	mg/L	1	9/25/2006
1.2-Dichlorobenzene	ť	I	0.00050	0.010	mg/L	1	9/25/2006
1,3-Dichlorobenzene	L	I	0.00050	0.010	mg/L	1	9/25/2006
1.4-Dichlorobenzene	ι	J	0.00050	0.010) mg/L	1	9/25/2006
2,4,5-Trichlorophenol	ι	J	0.0010	0.010) mg/L	1	9/25/2006
2,4,6-Trichlorophenol	ι	J	0.0010	0.010) mg/L	1	9/25/2006
2,4-Dichlorophenol	ί	J	0.0010	0.010) mg/L	1	9/25/2006
2,4-Dimethylphenol	ι	J	0.0010	0.010) mg/L	1	9/25/2006
2,4-Dinitrophenol	ι	J	0.0010	0.010) mg/L	1	9/25/2006
2,4-Dinitrotoluene	ι	J	0.00070	0.010) mg/L	1	9/25/2006
2,6-Dinitrotoluene	ι	J	0.00080	0.010) mg/L	1	9/25/2006
2-Chloronaphthalene	ι	J	0.0010	0.010) mg/L	1	9/25/2006
2-Chlorophenol	ι	J	0.0010	0.010) mg/L	1	9/25/2006
2-Methylnaphthalene	l	J	0.00050	0.010) mg/L	1	9/25/2006
2-Methylphenol	l	J	0.0010	0.010) mg/L	1	9/25/2006
2-Nitroaniline	I	J	0.00050	0.010	0 mg/L	1	9/25/2006
2-Nitrophenol	I	J	0.00070	0.010	0 mg/L	1	9/25/2006
3&4-Methylphenol	1	J	0.0010	0.01	0 mg/L	1	9/25/2006
3.3'-Dichlorobenzidine	I	J	0.00070	0.01	0 mg/L	1	9/25/2006
3-Nitroaniline	1	J	0.0010	0.01	0 mg/L	1	9/25/2006

U - Analyzed for but Not Detected

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

P - Duai Column results RPD > 40%

E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	MW-6
Work Order:	0609302	Collection Date:	9/20/2006 3:50:00 PM
Project:	9206747/North Velasco		
Lab ID:	0609302-01	Matrix:	WATER
······			Dilution

Analyses	Result Qual	SQL	MQL Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	U	0.0010	0.010 mg/L	1	9/25/2006
4-Bromophenyl phenyl ether	U	0.00050	0.010 mg/L	1	9/25/2006
4-Chloro-3-methylphenol	Ų	0.0010	0.010 mg/L	1	9/25/2006
4-Chloroaniline	U	0.0010	0.010 mg/L	1	9/25/2006
4-Chlorophenyl phenyl ether	U	0.00050	0.010 mg/L	1	9/25/2006
4-Nitroaniline	U	0.00090	0.010 mg/L	1	9/25/2006
4-Nitrophenol	U	0.0010	0.010 mg/L	1	9/25/2006
Acenaphthene	U	0.00050	0.010 mg/L	1	9/25/2006
Acenaphthylene	U	0.0010	0.010° mg/L	1	9/25/2006
Anthracene	U	0.00070	0.010 mg/L	. 1	9/25/2006
Benz(a)anthracene	U	0.00050	0.010 mg/L	1	9/25/2006
Benzo(a)pyrene	U	0.00050	0.010 mg/L	1	9/25/2006
Benzo(b)fluoranthene	U	0.00070	0.010 mg/L	1	9/25/2006
Benzo(g,h,i)perylene	U	0.00050	0.010 mg/L	1	9/25/2006
Benzo(k)fluoranthene	U	0.00050	0.010 mg/L	1	9/25/2006
Bis(2-chloroethoxy)methane	U	0.00070	0.010 mg/L	1	9/25/2006
Bis(2-chloroethyl)ether	U	0.00080	0.010 mg/L	1	9/25/2006
Bis(2-chloroisopropyl)ether	U	0.00050	0.010 mg/L	1	9/25/2006
Bis(2-ethylhexyl)phthalate	U	0.00050	0.010 mg/L	1	9/25/2006
Butyl benzyl phthalate	U	0.00050	0.010 mg/L	1	9/25/2006
Carbazole	U	0.00050	0.010 mg/L	1	9/25/2006
Chrysene	U	0.00050	0.010 mg/L	1	9/25/2006
Di-n-butyl phthalate	U	0.00050	0.010 mg/L	1	9/25/2006
Di-n-octyl phthalate	U	0.00050	0.010 mg/L	1	9/25/2006
Dibenz(a,h)anthracene	U	0.0010	0.010 mg/L	1	9/25/2006
Dibenzofuran	U	0.00050	0.010 mg/L	1	9/25/2006
Diethyl phthalate	U	0.00050	0.010 mg/L	1	9/25/2006
Dimethyl phthalate	U	0.00050	0.010 mg/L	. 1	9/25/2006
Fluoranthene	U	0.00050	0.010 mg/L	. 1	9/25/2006
Fluorene	U	0.00050	0.010 mg/L	. 1	9/25/2006
Hexachiorobenzene	U	0.00050	0.010 mg/L	. 1	9/25/2006
Hexachlorobutadiene	U	0.00060	0.010 mg/L	. 1	9/25/2006
Hexachlorocyclopentadiene	U	0.00050	0.010 mg/L	. 1	9/25/2006
Hexachloroethane	U	0.00050	0.010 mg/L	. 1	9/25/2006
Indeno(1,2,3-cd)pyrene	υ	0.00050	0.010 mg/l	. 1	9/25/2006
Isophorone	U	0.00050	0.010 mg/L	. 1	9/25/2006
N-Nitrosodi-n-propylamine	U	0.00050	0.010 mg/l	. 1	
N-Nitrosodiphenylamine	U	0.00050	0.010 mg/l		
Naphthalene	υ	0.00050	0.010 mg/l		
Nitrobenzene	U	0.00050	0.010 mg/l	- 1	9/25/2006

Qualifiers:

U - Analyzed for but Not Detected

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

P - Dual Column results RPD > 40%

E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client
Work Order:	0609302	Coile
Project:	9206747/North Velasco	
Lab ID:	0609302-01	

Client Sample ID: MW-6 Collection Date: 9/20/2006 3:50:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/25/2006
•	U		0.00050	0.010	-	1	9/25/2006
Phenanthrene	U		0.00050	0.010	-	1	9/25/2006
Phenol	U		0.00050	0.010	-	1	9/25/2006
Pyrene	73.7			39-153	-	1	9/25/2006
Surr: 2,4,6-Tribromophenol	75.2			40-147	%REC	1	9/25/2006
Surr: 2-Fluorobiphenyl	61.5			21-110		1	9/25/2006
Surr: 2-Fluorophenol	81.9			39-141	%REC	1	9/25/2006
Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	72.4			37-140	%REC	1	9/25/2006
Surr: Nitrobenzene-05 Surr: Phenol-d6	66.2			11-100	%REC	1	9/25/2006
	00.2						Analyst: PC
VOLATILES BY GC/MS		Met	hod: SW8260	0.0050	 //	1	9/25/2006
1,1,1-Trichloroethane	U		0.00060	0.0050	•	1	9/25/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	•	1	9/25/2006
1,1,2-Trichloroethane	υ		0.00050	0.0050	v	1	9/25/2006
1,1-Dichloroethane	U		0.00050	0.0050	•	1	9/25/2006
1,1-Dichloroethene	U		0.00060	0.0050	•		9/25/2006
1,2,4-Trimethylbenzene	U		0.00060	0.0050	÷	1	9/25/2006
1,2-Dichloroethane	U		0.00050	0.0050	÷	1	9/25/2006
1,2-Dichloropropane	U		0.00070	0.0050	•		9/25/2006
1,3,5-Trimethylbenzene	U		0.00070	0.0050	•	1	9/25/2006
2-Butanone	U		0.00080	0.010	•	1	9/25/2006
2-Hexanone	U		0.0025	0.01(•		9/25/2006
4-Methyl-2-pentanone	U		0.0016	0.010	•	1	9/25/2006
Acetone	L		0.0025	0.01(•	1	
Benzene	L		0.00060	0.005	•	1	9/25/2006
Bromodichloromethane	L		0.00050	0.005	•	1	9/25/2006
Bromoform	L	j	0.00080	0.005	-	1	9/25/2006
Bromomethane	l	ţ	0.00050	0.005	•	1	9/25/2006
Carbon disulfide	L		0.00070	0.01	-	1	9/25/2006
Carbon tetrachloride	· L	J	0.00060	0.005	-	1	9/25/2006
Chlorobenzene	ι		0.00050	0.005	-	1	9/25/2006
Chloroethane	ι	1	0.00060	0.005	•	1	9/25/2006
Chloroform	ι		0.00050	0.005	÷	1	9/25/2006
Chloromethane	ι		0.00050	0.005	•	1	9/25/2006
cis-1,2-Dichloroethene		ſ	0.00050	0.005	•	1	9/25/2006
cis-1,3-Dichloropropene		J	0.00050	0.005	~	1	9/25/2006
Dibromochloromethane		J	0.00050	0.005	Ŷ	1	9/25/2006
Ethylbenzene	l	J	0.00050	0.005	-	1	9/25/2006
m,p-Xylene	ţ	J	0.0010	0.01		1	9/25/200
Methyl tert-butyl ether	I	J	0.00050	0.005	0 mg/L	1	9/25/2006

U - Analyzed for but Not Detected

Qualifiers:

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40% E - Value above quantitation range

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sample ID:	MW-6
Work Order:	0609302	Collection Date:	9/20/2006 3:50:00 PM
Project:	9206747/North Velasco		
Lab ID:	0609302-01	Matrix:	WATER

Analyses	Result Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Methylene chloride	U	0.00060	0.010	mg/L	1	9/25/2006
n-Butylbenzene	U	0.00080	0.0050	mg/L	1	9/25/2006
Naphthalene	U	0.0011	0.0050	mg/L	1	9/25/2006
o-Xylene	U	0.00050	0.0050	mg/L	1	9/25/2006
sec-Butylbenzene	U	0.00070	0.0050	mg/L	1	9/25/2006
Styrene	U	0.00050	0.0050	mg/L	1	9/25/2006
Tetrachloroethene	U	0.00050	0.0050	mg/L	1	9/25/2006
Toluene	U	0.00050	0.0050	mg/L	1	9/25/2006
trans-1,2-Dichloroethene	U	0.00060	0.0050	mg/L	1	9/25/2006
trans-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/25/2006
Trichloroethene	U	0.00070	0.0050	mg/L	1	9/25/2006
Vinyl chloride	U	0.00060	0.0020	mg/L	1	9/25/2006
Xylenes, Total	U	0.0015	0.015	mg/L	1	9/25/2006
Surr: 1,2-Dichloroethane-d4	104		70-125	%REC	1	9/25/2006
Sur: 4-Bromofluorobenzene	109		72.4-125	%REC	1	9/25/2006
Surr: Dibromofluoromethane	110		71.2-125	%REC	1	9/25/2006
Surr: Toluene-d8	109		75-125	%REC	1	9/25/2006

Qualifiers:

U - Analyzed for but Not Detected

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range
- H Analyzed outside of Hold Time

e-Lab Analytical, Inc.				Date: September 27, 2006				
CLIENT: Te Work Order: 06	erracon Consulting E 09302		ientists		Client San Collectio		MW-5 9/20/2006 4:45	:00 PM
~ 3	06747/North Velaso	0			r	Matrix:	WATER	
Lab ID: 06	09302-02				l			
Analyses		Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
LOW-LEVEL TEXAS	ТРН		Met	hod: TX1005		Prep: T	X1005PR / 9/22/06	Analyst: JFT
nC6 to nC12	/	υ		0.20	0.50	mg/L	1	9/26/2006
>nC12 to nC28		U		0.20	0.50	mg/L	1	9/26/2006
>nC28 to nC35		υ		0.20	0.50	mg/L	1	9/26/2006
Total Petroleum Hydr	ocarbon	Ū		0.20	0.50	mg/L	1	9/26/2006
Surr: 2-Fluorobiph		100			70-130	%REC	1	9/26/2006
Surr: Trifluorometh		91.5			70-130	%REC	1	9/26/2006
	,		Met	hod: SW7470		Prep: S	SW7470 / 9/21/06	Analyst: JCJ
MERCURY, TOTAL Mercury		U	mot	0.000042	0.000200	mg/L	1	9/22/2006
			Mat	thod: SW6020		Prep: S	SW3010A / 9/22/06	Analyst: ALF
ICP METALS, TOTA	۱L.	0.00341	J	0.0018	0.00500	mg/L	1	9/22/2006
Arsenic		0.00341	Ŭ	0.00060	0.00500	mg/L	1	9/22/2006
Barium		0.134 U		0.00015	0.00100	mg/L	1	9/22/2006
Cadmium		0.0181		0.00050	0.00200	*	1	9/22/2006
Chromium		0.0181		0.00020	0.00500	-	1	9/22/2006
Lead		0.00343	J	0.00020	0.00500	-	1	9/22/2006
Selenium		0.00343 U	J	0.00020	0.00500	-	1	9/22/2006
Silver		0				-	0000000	Analyst LN
TCL SEMIVOLATIL	E ORGANICS			thod: SW8270			SW3510 / 9/22/06	Analyst: HV 9/25/2006
1,2,4-Trichlorobenze	ne	U		0.00050	0.010		1	9/25/2006
1,2-Dichlorobenzene)	U		0.00050	0.010	•	1	9/25/2006
1,3-Dichlorobenzene)	U		0.00050	0.010	-	1	9/25/2006
1,4-Dichlorobenzene	9	U		0.00050	0.010	-	1	9/25/2006
2,4,5-Trichlorophene	bl	U		0.0010	0.010		1	9/25/2006
2,4,6-Trichlorophene	l	U		0.0010	0.010	-	1	9/25/2006
2,4-Dichlorophenol		U		0.0010	0.010	*	1	9/25/2006
2,4-Dimethylphenol		U		0.0010	0.010	-		9/25/2006
2,4-Dinitrophenol		U		0.0010			1	9/25/2006
2,4-Dinitrotoluene		U		0.00070			1	9/25/2006
2,6-Dinitrotoluene		Ų		0.00080			1	9/25/2006
2-Chloronaphthalen	e	U		0.0010		-	1	9/25/2006
2-Chiorophenol		L		0.0010			1	9/25/2006
2-Methyinaphthalen	e	L		0.00050			1	9/25/2006
2-Methylphenol		L		0.0010			1	9/25/2006
2-Nitroaniline		ι		0.00050		-	1	9/25/2006
2-Nitrophenol		L		0.00070			1	
3&4-Methylphenol		L		0.0010			1	9/25/2006 9/25/2006
3,3'-Dichlorobenzid	ine	ι	J	0.00070	0.01) mg/L	1	9/25/2006

Qualifiers:

3-Nitroaniline

U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

0.010 mg/L

0.0010

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

U

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40% E - Value above quantitation range

H - Analyzed outside of Hold Time

1

9/25/2006

CLIENT:	Terracon Consulting Engineers & Scientists	
Work Order:	0609302	
Project:	9206747/North Velasco	
Lab ID:	0609302-02	

Client Sample ID: MW-5 Collection Date: 9/20/2006 4:45:00 PM

Matrix: WATER

analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	υ		0.0010	0.010	mg/L	1	9/25/2006
4-Bromophenyl phenyl ether	U		0.00050	0.010	mg/L	1	9/25/2006
4-Chloro-3-methylphenol	U		0.0010	0.010	mg/L	1	9/25/2006
4-Chloroaniline	U		0.0010	0.010	mg/L	1	9/25/2006
4-Chlorophenyl phenyl ether	υ		0.00050	0.010	mg/L	1	9/25/2006
4-Nitroaniline	U		0.00090	0.010	mg/L	1	9/25/2006
4-Nitrophenol	U		0.0010	0.010	mg/L	1	9/25/2006
Acenaphthene	U		0.00050	0.010	mg/L	1	9/25/2006
Acenaphthylene	U		0.0010	0.010	mg/L	1	9/25/2006
Anthracene	U		0.00070	0.010	mg/L	1	9/25/2006
Benz(a)anthracene	U		0.00050	0.010	mg/L	1	9/25/2006
Benzo(a)pyrene	U		0.00050	0.010	mg/L	1	9/25/2006
Benzo(b)fluoranthene	U		0.00070	0.010	mg/L	1	9/25/2006
Benzo(g,h,i)perylene	U		0.00050	0.010	mg/L	1	9/25/2006
Benzo(k)fluoranthene	U		0.00050	0.010	mg/L	1	9/25/2006
Bis(2-chloroethoxy)methane	U		0.00070	0.010	mg/L	1	9/25/2006
Bis(2-chloroethyl)ether	U		0.00080	0.010	mg/L	1	9/25/2006
Bis(2-chloroisopropyl)ether	U		0.00050	0.010	mg/L	1	9/25/2006
Bis(2-ethylhexyl)phthalate	0.0046	J	0.00050	0.010	mg/L	1	9/25/2006
Butyl benzyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Carbazole	U		0.00050	0.010	mg/L	1	9/25/2006
Chrysene	U		0.00050	0.010	mg/L	1	9/25/2006
Di-n-butyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Di-n-octyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Dibenz(a,h)anthracene	U		0.0010	0.010	mg/L	1	9/25/2006
Dibenzofuran	U		0.00050	0.010		1	9/25/2006
Diethyl phthalate	U		0.00050	0.010		A	9/25/2006
Dimethyl phthalate	U		0.00050	0.010	mg/L	1	9/25/2006
Fluoranthene	U		0.00050	0.010	mg/L	1	9/25/2006
Fluorene	U		0.00050	0.010	mg/L	1	9/25/2006
Hexachlorobenzene	U		0.00050	0.010	mg/L	1	9/25/2006
Hexachlorobutadiene	U		0.00060	0.010	mg/L	1	9/25/2006
Hexachlorocyclopentadiene	ບ		0.00050	0.010	mg/L	1	9/25/2006
Hexachloroethane	- U		0.00050	0.010	÷	1	9/25/2006
Indeno(1,2,3-cd)pyrene	Ű		0.00050	0.010	+	1	9/25/2006
Isophorone	Ű		0.00050	0.010	mg/L	1	9/25/2006
N-Nitrosodi-n-propylamine	- U		0.00050	0.010	*	1	9/25/2006
N-Nitrosodiphenylamine	Ű		0.00050	0.010	•	1	9/25/2006
Naphthalene	Ű		0.00050	0.010	•	1	9/25/2006
Nitrobenzene	Ű		0.00050	0.010	•	1	9/25/2006

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

P - Dual Column results RPD > 40%

E - Value above quantitation range

Date: September 27, 2006

CLIENT:	Terracon Consulting Engineers & Scientists	Client Sam
Work Order:	0609302	Collection
Project:	9206747/North Velasco	
Lab ID:	0609302-02	N

ient Sample ID: MW-5 Collection Date: 9/20/2006 4:45:00 PM

Matrix: WATER

Analyses	Result	Qual	SQL	MQL	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	U		0.0010	0.010	mg/L	1	9/25/2006
Phenanthrene	U		0.00050	0.010	mg/L	1	9/25/2006
Phenol	U		0.00050	0.010	mg/L	1	9/25/2006
Pyrene	U		0.00050	0.010	mg/L	1	9/25/2006
Surr: 2,4,6-Tribromophenol	64.0			39-153	%REC	1	9/25/2006
Surr: 2-Fluorobiphenyl	67.0			40-147	%REC	1	9/25/2006
Surr: 2-Fluorophenol	55.8			21-110	%REC	1	9/25/2006
Surr: 4-Terphenyl-d14	72.2			39-141	%REC	1	9/25/2006
Surr: Nitrobenzene-d5	65.7			37-140	%REC	1	9/25/2006
Sur: Phenol-d6	60.3			11-100	%REC	1	9/25/2006
OLATILES BY GC/MS		Met	hod: SW8260				Analyst: PC
1,1,1-Trichloroethane	U		0.00060	0.0050	mg/L	1	9/22/2006
1,1,2,2-Tetrachloroethane	U		0.0015	0.0050	mg/L	1	9/22/2006
1,1,2-Trichloroethane	U		0.00050	0.0050	mg/L	1	9/22/2006
1,1-Dichloroethane	υ		0.00050	0.0050	mg/L	1	9/22/2006
1.1-Dichloroethene	U		0.00060	0.0050	mg/L	1	9/22/2006
1,2,4-Trimethylbenzene	υ		0.00060	0.0050	mg/L	1	9/22/2006
1,2-Dichloroethane	U		0.00050	0.0050	mg/L	1	9/22/2006
1,2-Dichloropropane	U		0.00070	0.0050) mg/L	1	9/22/2006
1,3,5-Trimethylbenzene	. U		0.00070	0.0050) mg/L	1	9/22/2006
2-Butanone	U		0.00080	0.010) mg/L	1	9/22/2006
2-Hexanone	U		0.0025	0.010) mg/L	1	9/22/2006
4-Methyl-2-pentanone	u		0.0016	0.010) mg/L	1	9/22/2006
Acetone	U		0.0025	0.010) mg/L	1	9/22/2006
Benzene	ι		0.00060	0.0050) mg/L	1	9/22/2006
Bromodichloromethane	L	I	0.00050	0.0050) mg/L	1	9/22/2006
Bromoform	ι	I	0.00080	0.0050) mg/L	1	9/22/2006
Bromomethane	L	I	0.00050	0.0050) mg/L	1	9/22/2006
Carbon disulfide	ί	I	0.00070	0.01() mg/L	1	9/22/2006
Carbon tetrachloride	ί	J	0.00060	0.005) mg/L	1	9/22/2006
Chlorobenzene	ι	ļ	0.00050	0.005) mg/L	1	9/22/2006
Chloroethane	ι	J	0.00060	0.005) mg/L	1	9/22/2006
Chloroform	ι	J	0.00050	0.005	0 mg/L	1	9/22/2006
Chloromethane	ι	J	0.00050	0.005	0 mg/L	1	9/22/2006
cis-1,2-Dichloroethene	ι	ł	0.00050	0.005	0 mg/L	1	9/22/2006
cis-1,3-Dichloropropene	L	J	0.00050	0.005	0 mg/L	1	9/22/2006
Dibromochloromethane	ι	J	0.00050	0.005	0 mg/L	1	9/22/2006
Ethylbenzene	l	J	0.00050	0.005	0 mg/L	1	9/22/2006
m,p-Xylene	ι	J	0.0010	0.01	0 mg/L	1	9/22/2006
Methyl tert-butyl ether	l	J	0.00050	0.005	0 mg/L	1	9/22/200

U - Analyzed for but Not Detected

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

P - Dual Column results RPD > 40%

E - Value above quantitation range

CLIENT: Work Order:	Terracon Consulting Engineers & Scientists 0609302	Client Sample ID: Collection Date:	MW-5 9/20/2006 4:45:00 PM
Project:	9206747/North Velasco		
Lab ID:	0609302-02	Matrix:	WATER
			Dilution

Analyses	Result Qual	SQL	MQL	Units	Factor	Date Analyzed
Methylene chloride	U	0.00060	0.010	mg/L	1	9/22/2006
n-Butylbenzene	U	0.00080	0.0050	mg/L	1	9/22/2006
Naphthalene	U	0.0011	0.0050	mg/L	1	9/22/2006
o-Xylene	U	0.00050	0.0050	mg/L	1	9/22/2006
sec-Butylbenzene	U	0.00070	0.0050	mg/L	1	9/22/2006
Styrene	U	0.00050	0.0050	mg/L	1	9/22/2006
Tetrachloroethene	Ŭ	0.00050	0.0050	mg/L	1	9/22/2006
Toluene	Ŭ	0.00050	0.0050	mg/L	1	9/22/2006
trans-1,2-Dichloroethene	Ŭ	0.00060	0.0050	mg/L	1	9/22/2006
trans-1,3-Dichloropropene	U	0.00050	0.0050	mg/L	1	9/22/2006
Trichloroethene	U	0.00070	0.0050	mg/L	1	9/22/2006
	Ŭ	0.00060	0.0020	mg/L	1	9/22/2006
Vinyl chloride	Ŭ	0.0015	0.015	mg/L	1	9/22/2006
Xylenes, Total Surr: 1,2-Dichloroethane-d4	102		70-125	%REC	1	9/22/2006
•	86.2		72.4-125	%REC	1	9/22/2006
Surr: 4-Bromofluorobenzene	92.0		71.2-125	%REC	1	9/22/2006
Surr: Dibromofluoromethane Surr: Toluene-d8	95.5		75-125		1	9/22/2006

Qualifiers:

U - Analyzed for but Not Detected

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- P Dual Column results RPD > 40%
- E Value above quantitation range
- H Analyzed outside of Hold Time

Date: Sep 27, 2006

Test Code:8260_WTest Number:SW8260Test Name:Volatiles by GC/MS

Matrix:

Aqueous Units: mg/L

METHOD DETECTION / REPORTING LIMITS

Matrix	: Aqueous Units: mg/L			
Туре	Analyte	CAS	MDL	Unadjusted MQI
A	1,1,1-Trichloroethane	71-55-6	0.0006	0.005
Α	1,1,2,2-Tetrachloroethane	79-34-5	0.0015	0.005
A	1,1,2-Trichloroethane	79-00-5	0.0005	0.005
A	1,1-Dichloroethane	75-34-3	0.0005	0.005
Α	1,1-Dichloroethene	75-35-4	0.0006	0.003
A	1,2,4-Trimethylbenzene	95-63-6	0.0006	0.00
A	1,2-Dichloroethane	107-06-2	0.0005	0.00:
A	1,2-Dichloropropane	78-87-5	0.0007	0.00
A	1,3,5-Trimethylbenzene	108-67-8	0.0007	0.00
A	2-Butanone	78-93-3	0.0008	0.0
Ā	2-Hexanone	591-78-6	0.0025	0.0
A	4-Methyl-2-pentanone	108-10-1	0.0016	0.0
Â	Acetone	67-64-1	0.0025	0.0
A	Benzene	71-43-2	0.0006	0.00
A	Bromodichloromethane	75-27-4	0.0005	0.00
A	Bromoform	75-25-2	0.0008	0.00
A	Bromomethane	74-83-9	0.0005	0.00
A	Carbon disulfide	75-15-0	0.0007	0.0
A	Carbon tetrachloride	56-23-5	0.0006	0.0(
A	Chlorobenzene	108-90-7	. 0.0005	0.00
A	Chloroethane	75-00-3	0.0006	0.0
A	Chloroform	67-66-3	0.0005	0.0
A	Chloromethane	74-87-3	0.0005	0.0
A	cis-1,2-Dichloroethene	156-59-2	0.0005	0.0
A	cis-1,3-Dichloropropene	10061-01-5	0.0005	0.0
A	Dibromochloromethane	124-48-1	0.0005	0.0
A	Ethylbenzene	100-41-4	0.0005	0.0
A	m,p-Xylene	136777-61-2	0.001	0.
A	Methyl tert-butyl ether	1634-04-4	0.0005	0.0
A	Methylene chloride	75-09-2	0.0006	0.
A	n-Butylbenzene	104-51-8	0.0008	0.0
A	Naphthalene	91-20-3	0.0011	0.0
A	o-Xylene	95-47-6	0.0005	0.0
A	sec-Butylbenzene	135-98-8	0.0007	0.0
		100-42-5	0.0005	0.0
A A	Styrene Tetrachloroethene	127-18-4	0.0005	
	Toluene	108-88-3	0.0005	0.0
A	trans-1,2-Dichloroethene	156-60-5	0.0006	
A	trans-1,3-Dichloropropene	10061-02-6	0.0005	; 0.0
A	Trichloroethene	79-01-6	0.0007	
A A	Vinyl chloride	75-01-4	0.0006	

Date: Sep 27, 2006

M	Xylenes, Total	1330-20-7	0.0015	0.015
S	Surr: 1.2-Dichloroethane-d4	17060-07-0	0	0.005
Š	Surr: 4-Bromofluorobenzene	460-00-4	0	0.005
S	Surr: Dibromofluoromethane	1868-53-7	0	0.005
S	Surr: Toluene-d8	2037-26-5	0	0.005

Date: Sep 27, 2006

Test Code: Test Number: Test Name:	8270_TCL_V SW8270 TCL Semivol	V atile Organics	METHOD DETECTION REPORTING LIMITS		
Matrix:	Aqueous	Units: mg/L			
Type Analyte			CAS	MDL	Unadjusted MQL
			100.80.1	0.0005	0.01

Type	Analyte	CAS	MDD Cilad	Justeu m.QD
	1,2,4-Trichlorobenzene	120-82-1	0.0005	0.01
A	1,2-Dichlorobenzene	95-50-1	0.0005	0.01
A	1,3-Dichlorobenzene	541-73-1	0.0005	0.01
A A	1,4-Dichlorobenzene	106-46-7	0.0005	0.01
A	2,4,5-Trichlorophenol	95-95-4	0.001	0.01
	2,4,5-Trichlorophenol	88-06-2	0.001	0.01
A	2,4-Dichlorophenol	120-83-2	0.001	0.01
A	2,4-Dimethylphenol	105-67-9	0.001	0.01
A	2,4-Dinitrophenol	51-28-5	0.001	0.01
A	2,4-Dinitrotoluene	121-14-2	0.0007	0.01
A	2,4-Dinitrotoluene	606-20-2	0.0008	0.01
A	·	91-58-7	0.001	0.01
A	2-Chloronaphthalene	95-57-8	0.001	0.01
A	2-Chlorophenol	91-57-6	0.0005	0.01
A	2-Methylnaphthalene	95-48-7	0.001	0.01
A	2-Methylphenol	88-74-4	0.0005	0.01
Α	2-Nitroaniline	88-75-5	0.0007	0.01
A	2-Nitrophenol	106-44-5	0.001	0.01
Α	3&4-Methylphenol	91-94-1	0.0007	0.01
A	3,3'-Dichlorobenzidine	99-09-2	0.001	0.01
Α	3-Nitroaniline	534-52-1	0.001	0.01
A	4,6-Dinitro-2-methylphenol	101-55-3	0.0005	0.01
Α	4-Bromophenyl phenyl ether	59-50-7	0.001	0.01
A	4-Chloro-3-methylphenol	106-47-8	0.001	0.01
Α	4-Chloroaniline	7005-72-3	0.0005	0.01
Α	4-Chlorophenyl phenyl ether	100-01-6	0.0009	0.01
A	4-Nitroaniline	100-02-7	0.001	0.01
А	4-Nitrophenol	83-32-9	0.0005	0.01
Α	Acenaphthene	208-96-8	0.001	0.01
Α	Acenaphthylene	208-98-8 120-12-7	0.0007	0.01
Α	Anthracene		0.0005	0.01
Α	Benz(a)anthracene	56-55-3 50-22-8	0.0005	0.01
Α	Benzo(a)pyrene	50-32-8	0.0007	0.01
Α	Benzo(b)fluoranthene	205-99-2	0.0005	0.01
Α	Benzo(g,h,i)perylene	191-24-2	0.0005	0.01
Α	Benzo(k)fluoranthene	207-08-9		0.01
Α	Bis(2-chloroethoxy)methane	111-91-1	0.0007	0.01
А	Bis(2-chloroethyl)ether	111-44-4	0.0008	0.01
Α	Bis(2-chloroisopropyl)ether	108-60-1	0.0005	0.01
Α	Bis(2-ethylhexyl)phthalate	117-81-7	0.0005	0.01
A	Butyl benzyl phthalate	85-68-7	0.0005	0.01
Α	Carbazole	86-74-8	0.0005	
Α	Chrysene	218-01-9	0.0005	0.01

Date: Sep 27, 2006

	(,, , , , , , , , , , , , , , , , , , ,			
A	Di-n-butyl phthalate	84-74-2	0.0005	0.01
A	Di-n-octyl phthalate	117-84-0	0.0005	0.01
A	Dibenz(a,h)anthracene	53-70-3	0.001	0.01
A	Dibenzofuran	132-64-9	0.0005	0.01
Ā	Diethyl phthalate	84-66-2	0.0005	0.01
A	Dimethyl phthalate	131-11-3	0.0005	0.01
A	Fluoranthene	206-44-0	0.0005	0.01
A	Fluorene	86-73-7	0.0005	0.01
A	Hexachlorobenzene	118-74-1	0.0005	0.01
A	Hexachlorobutadiene	87-68-3	0.0006	0.01
A	Hexachlorocyclopentadiene	77-47-4	0.0005	0.01
A	Hexachloroethane	67-72-1	0.0005	0.03
A	Indeno(1,2,3-cd)pyrene	193-39-5	0.0005	0.0
A	Isophorone	78-59-1	0.0005	0.0
A	N-Nitrosodi-n-propylamine	621-64-7	0.0005	0.0
Â	N-Nitrosodiphenylamine	86-30-6	0.0005	0.0
A	Naphthalene	91-20-3	0.0005	0.0
A	Nitrobenzene	98-95-3	0.0005	0.0
Ā	Pentachlorophenol	87-86-5	0.001	0.0
Â	Phenanthrene	85-01-8	0.0005	0.0
A	Phenol	108-95-2	0.0005	0.0
A	Pyrene	129-00-0	0.0005	0.0
S	Surr: 2,4,6-Tribromophenol	118-79-6	0	0.0
s	Surr: 2-Fluorobiphenyl	321-60-8	0	0.0
s	Surr: 2-Fluorophenol	367-12-4	0	0.0
S	Surr: 4-Terphenyl-d14	1718-51-0	0	0.0
S	Surr: Nitrobenzene-d5	4165-60-0	0	0.0
S	Surr: Phenol-d6	13127-88-3	0	0.0

Date: Sep 27, 2006

e-Lab Analytical, Inc.

Test Code: HG_W Test Number: SW7470				THOD DET	TECTION / S LIMITS
Test Name:	Mercury, Tota	al			
Matrix:	Aqueous	Units: mg/L			
Type Analyte			CAS	MDL	Unadjusted MQL
A Mercury			7439-97-6	0.000042	0.0002

A Mercury

Test Code: Test Number: Test Name:	ICP_TW SW6020 ICP Metals, Total			HOD DET PORTINC	FECTION / G LIMITS
Matrix:	Aqueous	Units: mg/L			
Type Analyte			CAS	MDL	Unadjusted MQL
A Arsenic			7440-38-2	0.0018	0.005

A	Arsenic	7440-38-2	0.0018	0.005
A	Barium	7440-39-3	0.0006	0.005
Â	Cadmium	7440-43-9	0.00015	0.001
	Chromium	7440-47-3	0.0005	0.002
A	Lead	7439-92-1	0.0002	0.005
Â	Selenium	7782-49-2	0.0017	0.005
A	Silver	7440-22-4	0.0002	0.005

······

Test Code: Test Number: Test Name: Matrix:		TX1005_W_Low TX1005 Low-level Texas TPH Aqueous Units: mg/L		METHOD DETECTION REPORTING LIMIT		
Туре	Analyte	-		CAS	MDL	Unadjusted MQL
A	>nC12 to	o nC28		TPHDRO	0.2	0.5
Α	>nC28 to	o nC35		10W40MOTO	0.2	0.5
A	nC6 to n	C12		TPHGRO	0.2	0.5
М	Total Pe	troleum Hydro	carbon	TPH	0.2	0.5
S	Surr: 2-Fluorobiphenyl			321-60-8	0	0
S	Surr: Trifluoromethyl benzene			98-08-8	0	0

e-Lab Analytical, Inc.

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302Project:9206747/North Velasco

Date: Sep 27 2006

QC BATCH REPORT

atch ID: 19934	Instrument ID: FID-7		Method:	TX1005							
BLK Sample ID: FI	BLKW2-060922					Un	its: mg/L		Analysis Dat	te: 09/25/0	6 19:50
Client ID:		n ID: FID-7_00	0922A		Seql	No: 9568	54	Prep Date: 9/2	2/2006	DF: 1	
Alerit ID.		-		SPK Ref Value		~~~~	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
nalyte	Result	MQL	SPK Val	Value		%REC			70151		
C6 to nC12	U	0.50									
nC12 to nC28	U	0.50									
nC28 to nC35	U	0.50									
Fotal Petroleum Hydrocarbor	n U	0.50									
Surr: 2-Fluorobiphenyl	5.778	0	5		0	116	70-130	(
Surr: Trifluoromethyl benz	rene 5.049	0	5		0	101	70-130	()		
LCS Sample ID: F	LCSW2-060922					U	nits: mg/l	•	Analysis Da	ate: 09/25/0)6 20:31
Client ID:		un ID: FID-7_0	60922A		Seq	No: 9568	355	Prep Date: 9/2	2/2006	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	MQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
nC6 to nC12	39.96	0.50	33.3		0	120	75-125		0		
>nC12 to nC28	39.44	0.50	33.3		0	118	75-125		0		
Surr: 2-Fluorobiphenyl	6,388	0	5		0	128	70-130	I	0		
Surr: Trifluoromethyl benz		0	5		0	114	70-130		0		
LOCD CompletD: 1	FLCSDW2-060922					U	Inits: mg /	L	Analysis D	ate: 09/25 /	06 21:12
LCSD Sample ID: I	FLOODHE-000322		00000		Sar	gNo: 956	856	Prep Date: 9/2	22/2006	DF: 1	
Olivert ID:	R	un ID: FID-7 (JOUYZZA		00						
Client ID:	R	un ID: FID-7_(160922A	00100	00		Control	PPD Pof		RPD	
Client ID:				SPK Ref	00	VDEC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID: Analyte	Result		SPK Val	SPK Ref Value		%REC	Control Limit		%RPD		Qual
Analyte		MQL			0	%REC 104		Value		Limit 30	Qual
Analyte nC6 to nC12	Result	MQL 0.50	SPK Val				Limit	Value 39.9	96 14.1 14 9.17	Limit 30 30	Qual
Analyte nC6 to nC12 >nC12 to nC28	Result 34.69	MQL 0.50 0.50	SPK Val 33.3		0	104	Limit 75-125	Value 39.9 39.4	96 14.1 14 9.17 38 9.11	Limit 30 7 30 7 30	Qual
Analyte nC6 to nC12	Result 34.69 35.98 5.831	MQL 0.50 0.50 0	SPK Val 33.3 33.3		0	104 108	Limit 75-125 75-125	Value 39.9 39.4 6.38	96 14.1 14 9.17 38 9.11	Limit 30 7 30 7 30	Qual
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben.	Result 34.69 35.98 5.831 izene 5.455	MQL 0.50 0.50 0	SPK Val 33.3 33.3 5		0 0 0	104 108 <i>117</i> 109	Limit 75-125 75-125 70-130	Value 39.9 39.4 6.38 9 5.71	96 14.1 14 9.17 38 9.11	Limit 30 7 30 7 30 5 30	
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben. MS Sample ID:	Result 34.69 35.98 5.831 zene 5.455 0609260-01BMS	MQL 0.50 0.50 0	SPK Val 33.3 33.3 5 5		0 0 0	104 108 <i>117</i> 109	Limit 75-125 75-125 70-130 70-130 Jnits: mg	Value 39.9 39.4 6.38 9 5.71	06 14.1 14 9.17 38 9.11 15 4.66 Analysis D	Limit 30 7 30 7 30 5 30	
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben.	Result 34.69 35.98 5.831 zene 5.455 0609260-01BMS	MQL 0.50 0.50 0	SPK Val 33.3 33.3 5 5	Value	0 0 0 0 Se	104 108 117 109	Limit 75-125 75-125 70-130 70-130 Jnits: mg/ 3852	Value 39.9 39.4 6.36 5.71 /L Prep Date: 9 /	06 14.1 14 9.17 38 9.11 15 4.66 Analysis D	Limit 30 30 30 30 5 30 5 30 9 9 9 9 9 9 9 9 9 9 9 9 9	
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben. MS Sample ID: Client ID:	Result 34.69 35.98 5.831 zene 5.455 0609260-01BMS	MQL 0.50 0.50 0 0 Run ID: FID-7_	SPK Val 33.3 33.3 5 5		0 0 0 0 Se	104 108 117 109	Limit 75-125 75-125 70-130 70-130 Juits: mg/ 5852 Control	Value 39.9 39.4 6.38 5.71 /L Prep Date: 9 /	06 14.1 14 9.17 38 9.11 15 4.66 Analysis D	Limit 30 30 30 5 30 bate: 09/25 DF: 1	
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben. MS Sample ID: Client ID: Analyte	Result 34.69 35.98 5.831 zene 5.455 0609260-01BMS F Result	MQL 0.50 0.50 0 0 Run ID: FID-7_	SPK Val 33.3 5 5 060922A SPK Val	Value SPK Re	0 0 0 0 Se	104 108 117 109 kqNo: 956 %REC	Limit 75-125 75-125 70-130 70-130 70-130 Juits: mg/ 5852 Control Limit	Value 39.9 6.36 5.71 /L Prep Date: 9/ RPD Ref Value	06 14.1 14 9.17 15 4.60 Analysis D 22/2006	Limit 30 30 30 5 30 5 30 5 09/25 DF: 1 RPD	/06 19:5
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben. MS Sample ID: Client ID: Analyte nC6 to nC12	Result 34.69 35.98 5.831 izene 5.455 0609260-01BMS F Result 30.52	MQL 0.50 0 0 8un ID: FID-7_ t MQL 2 0.50	SPK Val 33.3 5 5 060922A SPK Val 33.3	Value SPK Re	0 0 0 Se	104 108 117 109 L sqNo: 956 %REC 91.6	Limit 75-125 75-125 70-130 70-130 Jnits: mg/ 5852 Control Limit 75-125	Value 39.9 39.4 9 6.38 9 5.71 7L Prep Date: 9 / RPD Ref Value	06 14.1 14 9.17 15 4.66 Analysis D 22/2006	Limit 30 30 30 5 30 5 30 5 09/25 DF: 1 RPD	/06 19:5
Analyte nC6 to nC12 >nC12 to nC28 Surr: 2-Fluorobiphenyl Surr: Trifluoromethyl ben. MS Sample ID: Client ID: Analyte	Result 34.69 35.98 5.831 zene 5.455 0609260-01BMS F Result	MQL 0.50 0 0 8 0 8 0 8 0 8 0.50 0 50	SPK Val 33.3 5 5 060922A SPK Val 33.3 33.3	Value SPK Re	0 0 0 0 Se	104 108 117 109 kqNo: 956 %REC	Limit 75-125 75-125 70-130 70-130 70-130 Juits: mg/ 5852 Control Limit	Value 39.9 39.4 0 6.38 0 5.71 /L Prep Date: 9/ RPD Ref Value 5 5	06 14.1 14 9.17 15 4.60 Analysis D 22/2006 %RPD 0	Limit 30 30 30 5 30 5 30 5 09/25 DF: 1 RPD	/06 19:5

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank U - Analyzed for but not detected

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

E - Value above quantitation range

QC Page: 1 of 31

Terracon Consulting Engineers & Scientist **CLIENT:** 0609302 Work Order: 9206747/North Velasco **Project:**

QC BATCH REPORT

Batch ID: 19934	t in	strument ID: FI	D-7		Method	I: TX100	5						
MSD S	Sample ID: 060	9260-01BMSD)					U	nits: mg/l	- '	Analysis Da	ite: 09/25/	06 20:3
Client ID:	ampio int. •••): FID-7_0	60922A		Sec	No: 9568	353	Prep Date: 9/22	2/2006	DF: 1	
			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte			31.44	0.50	33.3		0	94.4	75-125	30.52	2.97	30	
nC6 to nC12			33.81	0.50	33.3		0	102	75-125	32.58	3.68	30	
>nC12 to nC28 Surr: 2-Fluoro			4.96	0.00	5		0	99.2	70-130	4.792	3.45	30	
	omethyl benzer	ne	5.042	0	5		0	101	70-130	4.909	2.67	30	
The following			nis batch:	06	09302-01B	0	6093	02-02B					

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 2 of 31

Work Ord Project:	ler: 06()9302)6747/North Ve								QC	DAIC		
Batch ID: 19	921	Instrument ID:	Mercury		Metho	l: SW747	0						
MBLK	Sample ID	: GBLKW1-09210	6					Uı	nits: mg/l	**	Analysis Da	ate: 09/22/	06 13:24
Client ID:			Rur	n ID: MERCL	JRY_06092:	2A	Sec	qNo: 9549	97	Prep Date: 9/2	:1/2006	DF: 1	
Analyte			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			U	0.00020						*****			
LCS	Sample ID	: GLCSW1-09210	6					U	nits: mg/l		Analysis Da	ate: 09/22	06 13:26
Client ID:			Ru	n ID: MERCU	JRY_06092	2 A	Sec	qNo: 9549	98	Prep Date: 9/2	1/2006	DF: 1	
Analyte			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			0.00462	0.00020	0.005		0	92.4	85-115	. (D.		
LCSD	Sample ID	: GLCSDW1-092	106					Ų	nits: mg/l		Analysis D	ate: 09/22	/06 13:28
Client ID:			Ru	n ID: MERCI	JRY_06092	2A	Sec	qNo: 955(001	Prep Date: 9/2	1/2006	DF: 1	
Analyte			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			0.00472	0.00020	0.005		0	94,4	85-115	0.0046	2 2.14	20	
MS	Sample ID	: 0609262-01CMS	\$					U	nits: mg/l	L	Analysis D	ate: 09/22	/06 13:48
Client ID:			Ru	n ID: MERCI	JRY_06092	2A	Sec	qNo: 955(010	Prep Date: 9/2	21/2006	DF: 1	
Analyte			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			0.00477	0.00020	0.005	0.0000	39	94	85-115		0		
MSD	Sample ID	: 0609262-01CM	SD					U	nits: mg /l		Analysis D	ate: 09/22	/06 13:50
Client ID:			Ru	n ID: MERCI	JRY_06092	2A	Sec	qNo: 955 0	015	Prep Date: 9/2	21/2006	DF: 1	
Analyte			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			0.00461	0.00020	0.005	0.0000	69	90.8	85-115	0.0047	7 3.41	20	
DUP	Sample ID	: 0609262-01CDL	JP					U	nits: mg/ l	L	Analysis D	ate: 09/22	/06 13:46
Client ID:			Ru	n ID: MERCI	JRY_06092	2A	Sec	qNo: 955	005	Prep Date: 9/2	21/2006	DF: 1	
Analyte			Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual

ND - Not Detected at the Reporting Limit

CLIENT:

Terracon Consulting Engineers & Scientist

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC BATCH REPORT

Terracon Consulting Engineers & Scientist **CLIENT:** 0609302 Work Order: 9206747/North Velasco **Project:** Method: SW7470 Instrument ID: Mercury Batch ID: 19921 Units: mg/L Analysis Date: 09/22/06 13:59 Sample ID: 0609270-01GDUP DUP С

Client ID:	Run I	D: MERCL	JRY_06092	2A	Sec	qNo: 9550)31	Prep Date: 9/21	/2006	DF:	1	
Analyte	Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RP Lin		Qual
Mercury	U	0.00020	0		0	0	0-0	0.000014		0	20	
The following samples were analy	/zed in this batch:	06	09302-01C	0	6093	02-02C						

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 4 of 31

QC BATCH REPORT

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302

QC BATCH REPORT

Project: 9206747/North Velasco

Batch ID: 19	923	Instrument ID: ICPMS02		Method:	SW602	0					·····	
MBLK	Sample ID:	MBLKW1-092206					Ur	nits: mg/L		Analysis D	ate: 09/22/	06 15:34
Client ID:		Run	ID: ICPMSO	2_060922A		Seq	No: 9552	79	Prep Date: 9/2	22/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic		U	0.0050									
Barium		· U	0.0050									
Cadmium		U	0.0020									
Chromium		U	0.0050									
Lead		U	0.0050									
Selenium		U	0.0050									
Silver		U	0.0050									
LCS	Sample ID:	MLCSW1-092206					U	nits: mg/L	1	Analysis D	ate: 09/22	/06 15:4
Client ID:		Run	ID: ICPMS0	2_060922A		Sec	qNo: 9552	280	Prep Date: 9/	22/2006	DF: 1	
Anaiyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
						0	100	80-121		0		
Arsenic		0.05019	0.0050	0.05 0.05		0	97.7	79.8-119		0		
Barium		0.04887	0.0050	0.05	~	0	102	79.1-119		0		
Cadmium		0.05079	0.0020	0.05		0	97.5	79.3-121		0		
Chromium		0.04876	0.0050	0.05		0	99.4	80-118		0		
Lead		0.05108	0.0050	0.05		õ	102	79.2-118		0		
Selenium Silver		0.04868	0.0050	0.05		0	97.4	80-117		0		
MS	Sample ID	0609262-01CMS					U	inits: mg/l	-	Analysis I	Date: 09/22	/06 18:3
Client ID:		Run	ID: ICPMS)2_060922A		Se	qNo: 955	295	Prep Date: 9	/22/2006	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
		0.05271	0.0050	0.05	0.0025	33	100	80-121		0		
Arsenic		0.05271	0.0050	0.05	0.0020		85.1	79.8-119)	0		
Barium Cadmium		0.04701	0.0020	0.05	-0.00030		94.6	79.1-119		0		
		0.04923	0.0050	0.05	0.003		90.7	79.3-121		0		
Chromium Lead		0.05184	0.0050	0.05	0.0028		97.9	80-118		0		,
Selenium		0.05008	0.0050	0.05	0.000096		100	79.2-118	3	0		
CONSTRUCTION (10.113)		0.00000	0,0000	0.00							*****	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank
 U - Analyzed for but not detected

E - Value above quantitation range

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

QC Page: 5 of 31

QC BATCH REPORT

 Work Order:
 0609302

 Project:
 9206747/North Velasco

Batch ID: 199	923	Instrument ID: ICPMS02		Method:	SW6020						
WSD	Sample ID:	0609262-01CMSD				Ui	nits: mg/L	A	nalysis Da	te: 09/22/0	6 18:37
Client ID:	ounpro re r		D: ICPMS0	2_060922A	Se	qNo: 9552	96	Prep Date: 9/22/	2006	DF: 1	
		Result	MQL.	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte							00 404	0.05271	0.494	15	
Arsenic		0.05245	0.0050	0.05	0.002533	99.8	80-121	0.05271	0.494	,0 15	
Barium		0.1032	0.0050	0.05	0.06083	84.7	79.8-119	0.1034	0.194	15	
Cadmium		0.0471	0.0020	0.05	-0.0003028	94.8	79.1-119		3.63	15	
Chromium		0.05105	0.0050	0.05	0.00387	94,4	79.3-121 80-118	0.04923	3.97	15	
Lead		0.05394	0.0050	0.05	0.002874	102		0.05104	1.35	15	
Selenium		0.05076	0.0050	0.05	0.00009676	101	79.2-118 80-117	0.05008	2.1	15	,
Silver		0.04331	0.0050	0.05	-0.0004885	87.6	00-117	0.04241	£)		
DUP	Sample ID:	0609262-01CDUP				U	nits: mg/L	. 4	Analysis Da	ate: 09/22/	06 18:20
Client ID:	·		ID: ICPMSC	2_060922A	Se	eqNo: 955	293	Prep Date: 9/22	/2006	DF: 1	
51617 101					SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	MQL	SPK Val		MREG					
Arsenic		0.002543	0.0050	0	0	0	0-0	0.002533	0		J
Barium		0.06053	0.0050	0	0	0	0-0	0.06083	0.494		
Cadmium		U	0.0020	0	0	0	0-0	-0.0003028	0		
Chromium		0.00333	0.0050	0	0	0	0-0	0.00387	0		J
Lead		0.002652	0.0050	0	0	0	0-0	0.002874	0		J
Selenium		U	0.0050	0	0	0	0-0	0.00009676	0		
Silver		U	0.0050	0	0	0	0-0	-0.0004885	C	25	
PDS	Sample ID	: 0609262-01CBS				ι	Jnits: mg/l	<u> </u>	Analysis D	ate: 09/22	/06 18:4
Client ID:	*****		ID: ICPMS	02_060922/	a s	eqNo: 958	5297	Prep Date:		DF: 1	
		Result	MQL	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte											
Arsenic		0.1105	0.0050	0.1	0.002533	108	75-125				
Barium		0.1643	0.0050	0.1	0.06083	103	75-125				
Cadmium		0.1003	0.0020	0.1	-0.0003028	101	75-125	_			
Chromium		0.1027	0.0050	0.1	0.00387	98.8	75-125				
Lead		0.1076	0.0050	0.1	0.002874	105	75-125				
Selenium		0.1062	0.0050	0.1	0.00009676	106	75-125				
Silver		0.07505	0.0050	0.1	-0.0004885	75.5	75-125	; C)		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 6 of 31

Terracon Consulting Engineers & Scientist **CLIENT:** 0609302 Work Order: 9206747/North Velasco **Project:**

QC BATCH REPORT

Batch ID: 19	923	Instrument ID: ICPMS02		Method	: SW602	0						
SD	Sample ID:	0609262-01C DIL S					Ur	nits: mg/l		Analysis Da	te: 09/22/	06 18:25
Client ID:	ounpro re r		ID: ICPMS	2_060922A		Sec	No: 9552	94	Prep Date:		DF: 5	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
rsenic		U	0.025	0		0	0	0-0	0.002533	0	10	
Barium		0.06105	0.025	0		0	0	0-0	0.06083	0.362	10	
Cadmium		U	0.010	0		0	0	0-0	-0.0003028	3 0	10	
		U	0.025	0		0	0	0-0	0.00387	<u> </u>	10	
Chromium		U	0.025	0		0	0	0-0	0.002874	ŧ 0	10	
_ead		U	0.025	0		0	0	0-0	0.00009676	30	10	
Selenium Silver		U	0.025	0		0	0	0-0	-0.000488	5 0	10	
	ne complee i	were analyzed in this batch:	0	609302-01C	0	6093	02-02C					

The following samples were analyzed in this batch:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 7 of 31

Terracon Consulting Engineers & Scientist **CLIENT:** 0609302 Work Order:

QC BATCH REPORT

9206747/North Velasco **Project:**

atch ID: 19941 Instrument ID:	SV-2		Method	I: SW827	U					
ABLK Sample ID: SBLKW3-06092	22				Uı	nits: µg/L		Analysis D	ate: 09/25 /	06 12:2
Client ID:		: SV-2_0	60925A		SeqNo: 9574	404	Prep Date: 9/2	22/2006	DF: 1	
				SPK Ref Value	*****	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
nalyte	Result	MQL	SPK Val	Value	%REC	Litter	1000			Quui
,2,4-Trichlorobenzene	U	10								
,2-Dichlorobenzene	U	10								
,3-Dichlorobenzene	U	10								
,4-Dichlorobenzene	U	10								
2,4,5-Trichlorophenol	U	10								
2,4,6-Trichlorophenol	U	10								
2,4-Dichlorophenol	U	10								
2,4-Dimethylphenol	U	10								
2,4-Dinitrophenol	U	10								
2,4-Dinitrotoluene	· U	10								
2,6-Dinitrotoluene	U	10								
2-Chloronaphthalene	U	10								
2-Chlorophenol	U	10								
2-Methyinaphthalene	U	10								
2-Methylphenol	U	10								
2-Nitroaniline	U	10								
2-Nitrophenol	υ	10								
3&4-Methylphenol	U	10								
3,3'-Dichlorobenzidine	Ŭ	10								
3-Nitroaniline	U	10								
	Ū	10								
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	U	10								
•	Ŭ	10								
4-Chloro-3-methylphenol 4-Chloroaniline	U	10								
	Ŭ	10								
4-Chlorophenyl phenyl ether	Ŭ	10								
4-Nitroaniline	U	10								
4-Nitrophenol	<u>U</u>	10								
Acenaphthene	U	10								
Acenaphthylene	U	10								
Anthracene	U	10								
Benz(a)anthracene	U U	10								
Benzo(a)pyrene	υ	10								
Benzo(b)fluoranthene	U	1(·····			
Benzo(g,h,i)perylene	U U	1(
Benzo(k)fluoranthene	U									
Bis(2-chloroethoxy)methane										
Bis(2-chloroethyl)ether	<u>U</u>	1(
Bis(2-chloroisopropyl)ether	U									
Bis(2-ethylhexyl)phthalate	<u> </u>	11								
Butyl benzyl phthalate	U	1	J							
ND - Not Detected at the Reporting Limit		S -	Spike Recov	ery outside	accepted recover	ry limits	B - Analyt	e detected in	assoc. Meth	od Blank
					covery limits		U - Analyz	red for but no	t detected	
J - Analyte detected below quantitation limits	,				cent difference	> 109/		above quantit		

O - Referenced analyte value is > 4 times amount spiked

P - Dual Column results percent difference > 40%

QC BATCH REPORT

 Work Order:
 0609302

 Project:
 9206747/North Velasco

Batch ID: 19941	instrument ID: SV-2		Method:	SW8270				
Carbazole	L	10						
Chrysene	ų	J 10						
Di-n-butyl phthalate	L	<u> </u>						
Di-n-octyl phthalate	L	J 10						
Dibenz(a,h)anthracene	L	J 10						
Dibenzofuran	ι	J 10						
Diethyl phthalate	L	<u>J 10</u>						
Dimethyl phthalate	ι	J 10						
Fluoranthene	L	J 10					·····	
Fluorene	ι	J 10						
Hexachlorobenzene	L	J 10						
Hexachlorobutadiene	l	10 ر						
Hexachlorocyclopentadiene	l	J 10						
Hexachloroethane	l	J 10						
Indeno(1,2,3-cd)pyrene	l	J 10						
Isophorone	1	J 10						
N-Nitrosodi-n-propylamine		U 10						·····
N-Nitrosodiphenylamine	1	U 10						
Naphthalene		U 10						
Nitrobenzene		U 10						
Pentachlorophenol		U 10						
Phenanthrene		U 10						
Phenol		U 10						
Pyrene		U 10						
Surr: 2,4,6-Tribromophen	ol 76.7	78 10		0	76.8	39-153	0	
Surr: 2-Fluorobiphenyl	77.3	34 10		0	77.3	40-147	0	
Surr: 2-Fluorophenol	65.0	02 10		0	65	21-110	0	
Surr: 4-Terphenyl-d14	83.9	99 10	100	0	84	39-141	0	
Surr: Nitrobenzene-d5	74	.7 10		0	74.7	37-140	0	
Surr: Phenol-d6	69.	35 10	100	0	69.3	11-100	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

QC BATCH REPORT

 Work Order:
 0609302

 Project:
 9206747/North Velasco

Batch ID: 19941	Instrument ID: SV-2		Method	: SW827	0						
LCS Sample ID:	SLCSW3-060922					U	nits: µg/L	Ar	nalysis D	ate: 09/25	/06 12:48
Client ID:	Ru	n ID: SV-2_0	60925A		Sec	1No: 9574	405	Prep Date: 9/22/2	006	DF: 1	
		·		SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	MQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,2,4-Trichlorobenzene	41.52	10	50		0	83	55.3-118	0			
1,2-Dichlorobenzene	40.36	10	50		0	80.7	55.9-115	0			
1,3-Dichlorobenzene	39.76	10	50		0	79.5	51.4-115	0			
1,4-Dichlorobenzene	39.63	10	50		0	79.3	53.2-115	0			
2,4,5-Trichlorophenol	90.83	10	100		0	90.8	59.2-126	0			
2,4,6-Trichlorophenol	81.39	10	100		0	81.4	59.8-120				
2,4-Dichlorophenol	87.14	10	100		0	87.1	57.6-121	0			
2,4-Dimethylphenol	80.07	10	100		0	80.1	57.2-115				
2,4-Dinitrophenol	78.95	10	100		0	79	46.2-124				
2,4-Dinitrotoluene	41.76	10	50		0	83.5	62.9-126	·····			
2,6-Dinitrotoluene	41.54	10	50		0	83.1	62.2-128				
2-Chloronaphthalene	43.36	10	50		0	86.7	57.6-117				
2-Chlorophenol	78.83	10	100		0	78.8	54.3-115				
2-Methyinaphthalene	41.24	10	50		0	82.5	51.4-124				
2-Methylphenol	81.54	10	100		0	81.5	41.5-115				
2-Nitroaniline	42.34	10	50		0	84.7	59.3-125				
2-Nitrophenol	82.4	10	100		0	82.4	57.2-115				
3&4-Methylphenol	118.1	10	150		0	78.7	<u>33.3-115</u> 26.7-118				
3,3'-Dichlorobenzidine	38.48	10	50		0 0	77 57.8	42.4-118				
3-Nitroaniline	28.91 79.18	<u>10</u> 10	50 100		0	79.2	60.1-129				
4,6-Dinitro-2-methylpheno		10	50		0	86.3	62.3-130				
4-Bromophenyl phenyl eth 4-Chloro-3-methylphenol	82.46	10	100		0	82.5	55.5-120				
4-Chloroaniline	34.55	10	50		0	69.1	36.4-116				
4-Chlorophenyl phenyl eth		10	50		0	83	64-124	0			
4-Nitroaniline	40.19	10	50		0	80.4	51.4-125	; 0			
4-Nitrophenol	69.45	10	100		0	69.5	17-100	0			
Acenaphthene	41.29	10	50		0	82.6	63.1-120) 0			
Acenaphthylene	41.04	10	50		0	82.1	62.8-118	3 0			
Anthracene	40.17	10	50		0	80.3	64.5-128	3 0			
Benz(a)anthracene	42.13	10	50		0	84.3	60.1-125	5 0			
Benzo(a)pyrene	42.78	10	50		0	85.6	56.7-135	5 0			
Benzo(b)fluoranthene	41.14	10	50		0	82.3	50.5-134	i 0			
Benzo(g,h,i)perylene	42.95	10	50		0	85.9	52.2-138	3 0			
Benzo(k)fluoranthene	44.5	10	50		0	89	60-140	0			
Bis(2-chloroethoxy)metha	ne 42.12	10	50		0	84.2	63.2-119) 0			
Bis(2-chloroethyl)ether	39.98	10	50		0	80	62.3-118	5 0			
Bis(2-chloroisopropyl)eth	er 40.94	10	50		0	81.9	54.9-117	70			
Bis(2-ethylhexyl)phthalate	e 43.56	10	50		0	87.1	59.1-136				
Butyl benzyl phthalate	43.33	10	50		0	86.7	57.5-132	2 0			

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

QC BATCH REPORT

Work Order: 0609302

Project: 9206747/North Velasco

Batch ID: 19941	Instrument ID: SV-2		Method:	SW8270				
Carbazole	41.91	10	50	0	83.8	65.5-130	0	
Chrysene	41.77	10	50	0	83.5	62.4-125	0	
Di-n-butyl phthalate	42.59	10	50	0	85.2	64.6-133	0	
Di-n-octyl phthalate	43.4	10	50	0	86.8	49.7-152	0	
Dibenz(a,h)anthracene	42.61	10	50	0	85.2	49.2-136	0	
Dibenzofuran	40.78	10	50	0	81.6	64.3-122	0	
Diethyl phthalate	42.53	10	50	0	85.1	62.7-129	0	
Dimethyl phthalate	42.58	10	50	0	85.2	63.7-126	0	
Fluoranthene	41.39	10	50	0	82.8	61.2-128	0	
Fluorene	40.8	10	50	0	81.6	64.9-121	0	
Hexachlorobenzene	41.46	10	50	0	82.9	65.6-126	0	
Hexachlorobutadiene	42.9	10	50	0	85.8	46.1-121	0	
Hexachlorocyclopentadiene	32.78	10	50	0	65.6	43.4-120	0	
Hexachloroethane	40.84	10	50	0	81.7	60-115	0	
indeno(1,2,3-cd)pyrene	40.99	10	50	0	82	50.3-123	0	
Isophorone	42.44	10	50	0	84.9	62-121	0	
N-Nitrosodi-n-propylamine	41.94	10	50	0	83.9	59.7-116	0	
N-Nitrosodiphenylamine	43.48	10	50	0	87	65.1-136	0	
Naphthalene	42.05	10	50	0	84.1	59.9-115	0	
Nitrobenzene	42.43	10	50	0	84.9	59.1-134	0	
Pentachlorophenol	76.3	10	100	0	76.3	51.3-134	0	
Phenanthrene	41.18	10	50	0	82.4	65.2-122	0	
Phenol	82.78	10	100	0	82.8	16-115	0	
Pyrene	42.44	10	50	0	84.9	59.7-121	0	
Surr: 2,4,6-Tribromophen	80.8	10	100	0	80.8	39-153	0	
Surr: 2-Fluorobiphenyl	80.23	10	100	0	80.2	40-147	0	
Surr: 2-Fluorophenol	76.35	10	100	0	76.3	21-110	0	
Surr: 4-Terphenyl-d14	83.46	10	100	0	83.5	39-141	0	
Surr: Nitrobenzene-d5	80.78	10	100	0	80.8	37-140	0	
Surr: Phenol-d6	78.74	10	100	0	78.7	11-100	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 11 of 31

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302

QC BATCH REPORT

Project: 9206747/North Velasco

Batch ID: 1	9941	Instrument ID: S	V-2		Method:								
MS	Sample ID:	0609270-01HMS						Un	its: µg/L		Analysis D		06 13:38
Client ID:	·		Run ID	: SV-2_06	60925A		Seq	No: 9574	07	Prep Date: 9/2	2/2006	DF: 1	
0.0000						SPK Ref			Control	RPD Ref		RPD	
Anchéo			Result	MQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Analyte							Δ	70.6	55.3-118		ז		
1,2,4-Trich	lorobenzene		35.31		50		00	67.7	55.9-115		<u>,</u>)		
1,2-Dichlor	obenzene		33.87	10	50		0	68.1	51.4-115		0		
1,3-Dichlor			34.03	10	<u>50</u> 50		0	67.6	53.2-115		0		
1,4-Dichlor	robenzene		33.82	10			0	92.8	59.2-126		0		
2,4,5-Trich			92.77	10	100		0	83.5	59.8-120		 0		
2,4,6-Trich	lorophenol		83.53	10	100 100		0	87.7	57.6-121		0		
2,4-Dichlor			87.68	-10	100		0	80.7	57.2-115		0		
2,4-Dimeth	nylphenol		80.67	10			0	78.5	46.2-124		0		
2,4-Dinitro	phenol		78.49	10	100		0	71.9	62.9-126		<u> </u>		
2,4-Dinitro	toluene		35.97	10	50			72.8	62.2-128		ů 0		
2,6-Dinitro	toluene		36.39	10	50		0	74.9	57.6-117		0		
2-Chlorona	aphthalene		37.47	10	50		0	80.4	54.3-115		0		
2-Chlorop	henol		80.41	10	100		0	70.9	51,4-124		0		
2-Methylna	aphthalene		35.43	10	50			81.4	41.5-115		0		
2-Methyip	henol		81.42	10	100		0	71.1	59.3-125		0		
2-Nitroanil	line		35.54	10	50		0		57.2-115		0		
2-Nitrophe	enol		83.41	10	100		0	<u>83.4</u> 87.9	33.3-115		0		
3&4-Meth			131.9	10	150		0	70.2	26.7-118		0		
3,3'-Dichl	orobenzidine		35.12	10	50			49	42.4-118		0		
3-Nitroani	line		24.51	10	50		0	4 9 85	60.1-129		0		
	o-2-methylphen		84.99	10	100		0	77.4	62.3-13		0		
	henyl phenyl e		38.72	10	50			90.2	55.5-120		0		
4-Chloro-	3-methylpheno		90.23	10			0	<u>90.2</u> 65.4	36.4-11		0		
4-Chloroa	niline		32.7	10			0	72.2	64-124		õ		
4-Chlorop	ohenyl phenyl e	ther	36.11	10			0		51.4-12		0		
4-Nitroan	iline		33.17	10			0	66.3	17-100		0		
4-Nitroph	enol		77.95	10			0	78	63.1-12		0		
Acenaph	thene		34.92	10			0	69.8	62.8-11		0		
Acenaph	thylene		34.95	10			0	69.9			0		
Anthrace	ne		35.66	10			0	71.3			0		
Benz(a)a	nthracene		36.14	10			0	72.3	60.1-12		0		
Benzo(a)	pyrene		35.92	10			0				0		
Benzo(b)	fluoranthene		35.4	10			0				0		
Benzo(g,	h,i)perylene		36.67	10			0				0		
Benzo(k)	fluoranthene		37.44	10			0				0		
Bis(2-ch	loroethoxy)metl	nane	36.04	10			0				0		
Bis(2-ch	loroethyl)ether		34.84	1(0				0		
Bis(2-ch	loroisopropyl)e	her	35.5	1(0						
Bis(2-eth	nylhexyl)phthala	ite	48.29	10			0				0		
Butyl bei	nzyl phthalate		38.1	10	50 50		0	76.2	57.5-13	54	0		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank
 U - Analyzed for but not detected

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

CLIENT: Terracon Consulting Engineers & Scientist Work Order: 0609302

QC BATCH REPORT

Project: 9206747/North Velasco

Batch ID: 19941	Instrument ID: SV-2		Method:	SW8270			
Carbazole	36.43	10	50	0	72.9	65.5-130	0
Chrysene	36.03	10	50	0	72.1	62.4-125	0
Di-n-butyl phthalate	37.33	10	50	0	74.7	64.6-133	0
Di-n-octyl phthalate	36.9	10	50	0	73.8	49.7-152	0
Dibenz(a,h)anthracene	35.65	10	50	0	71.3	49.2-136	0
Dibenzofuran	34.87	10	50	0	69.7	64.3-122	0
Diethyl phthalate	36.31	10	50	0	72.6	62.7-129	0
Dimethyl phthalate	36.67	10	50	0	73.3	63.7-126	0
Fluoranthene	35.09	10	50	0	70.2	61.2-128	0
Fluorene	35.27	10	50	0	70.5	64.9-121	0
Hexachlorobenzene	37.16	10	50	0	74.3	65.6-126	0
Hexachlorobutadiene	35.82	10	50	0	71.6	46.1-121	0
Hexachlorocyclopentadiene	28.72	10	50	0	57.4	43.4-120	0
Hexachloroethane	35.14	10	50	0	70.3	60-115	0
Indeno(1,2,3-cd)pyrene	35.2	10	50	0	70.4	50.3-123	0
Isophorone	36	10	50	0	72	62-121	0
N-Nitrosodi-n-propylamine	36.77	10	50	0	73.5	59.7-116	0
N-Nitrosodiphenylamine	37.96	10	50	0	75.9	65.1-136	0
Naphthalene	35.52	10	50	0	71	59.9-115	0
Nitrobenzene	35.13	10	50	0	70.3	59.1-134	0
Pentachlorophenol	80.38	10	100	0	80.4	51.3-134	0
Phenanthrene	36.21	10	50	0	72.4	65.2-122	0
Phenol	83.38	10	100	0	83.4	16-115	0
Pyrene	36.76	10	50	0	73.5	59.7-121	0
Surr: 2,4,6-Tribromophen	ol 70.64	10	100	0	70.6	39-153	0
Surr: 2-Fluorobiphenyl	66.55	10	100	0	66.6	40-147	0
Surr: 2-Fluorophenol	62.67	10	100	0	62.7	21-110	0
Surr: 4-Terphenyl-d14	71.83	10	100	0	71.8	39-141	0
Surr: Nitrobenzene-d5	67.16	10	100	0	67.2	37-140	0
Surr: Phenol-d6	66.42	10	100	0	66.4	11-100	0

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

E - Value above quantitation range QC Page: 13 of 31

QC BATCH REPORT

Work Order: 0609302

Project: 9206747/North Velasco

Batch ID: 19941	Instrument ID: SV-2		Method	SW827	U							
MSD Sample ID	: 0609270-01HMSD					Un	its: µg/L	A	nalysis Dal	ie: 09/25/0	6 14:03	
Client ID:		: SV-2_06	0925A		Seq	No: 9574	08 P	Prep Date: 9/22/2006 DF: 1				
Shent ID.			SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Analyte	Result	MQL	SPK Vai									
1,2,4-Trichlorobenzene	38.86	10	50		0	77.7	55.3-118	35.31	9.58	20		
1,2-Dichlorobenzene	37.43	10	50		0	74.9	55.9-115	33.87	9.99	20 20		
1,3-Dichlorobenzene	37.41	10	50		0	74.8	51.4-115	34.03	9.45 8.11	20		
1,4-Dichlorobenzene	36.68	10	50		0	73.4	53.2-115	<u>33.82</u> 92.77	3.87	20		
2,4,5-Trichlorophenol	96.44	10	100		0	96.4	59.2-126 59.8-120	83.53	7.93	20		
2,4,6-Trichlorophenol	90.42	10	100		00	<u>90.4</u> 97	57.6-121	87.68	10.1	20		
2,4-Dichlorophenol	96.96	10	100		0	88.8	57.2-115	80.67	9.65	20		
2,4-Dimethylphenol	88.85	10	100		0	95.6	46.2-124	78.49		20		
2,4-Dinitrophenol	95.63	10	100 50		0	80.4	62.9-126	35.97		20		
2,4-Dinitrotoluene	40.22	<u>10</u> 10	50		0	79.7	62.2-128	36.39		20		
2,6-Dinitrotoluene	39.86	10	50 50		0	80.8	57.6-117	37.47		20		
2-Chloronaphthalene	<u>40.41</u> 88.43	10	100		0	88.4	54.3-115	80.41	9.5	20		
2-Chlorophenol	38.74	10	50		0	77.5	51.4-124	35.43	8.93	20		
2-Methylnaphthalene	91.19	10	100		0	91.2	41.5-115	81.42	11.3	20		
2-Methylphenol	39.49	10	50		0	79	59.3-125	35.54	10.5	20		
2-Nitroaniline	93	10	100		0	93	57.2-115	83.41	10.9	20		
2-Nitrophenol 3&4-Methylphenol	141.5	10	150		0	94.3	33.3-115	131.9	6.99	20		
3.3'-Dichlorobenzidine	37.29	10	50		0	74.6	26.7-118	35.12	2 6	20		
3-Nitroaniline	28.18	10	50		0	56.4	42.4-118	24.51	13.9			
4,6-Dinitro-2-methylphe	nol 92.79	10	100		0	92.8	60.1-129	84.99	8.77			
4-Bromophenyl phenyl		10	50		0	81.2	62.3-130	38.72				
4-Chloro-3-methylphene	A + A	10	100		0	94.3	55.5-120	90.23				
4-Chloroaniline	32.26	10	50		0	64.5	36.4-116	32.7				
4-Chlorophenyl phenyl	ether 40.22	10	50		0	80.4	64-124	36.11				
4-Nitroaniline	38.52	10	50		0	77	51.4-125	33.1				
4-Nitrophenol	87.13	10	100		0	87.1	17~100	77.9				
Acenaphthene	38.99	10	50		0	78	63.1-120	34.9				
Acenaphthylene	38.55	10			0	77.1	62.8-118					
Anthracene	38.69	10			0	77.4	64.5-128					
Benz(a)anthracene	39.6	10			0	79.2	60.1-125					
Benzo(a)pyrene	39.33	10			0	78.7	56.7-135					
Benzo(b)fluoranthene	37.72	10			0	75.4						
Benzo(g,h,i)perylene	40.22	10			0	80.4		37.4				
Benzo(k)fluoranthene	42.17	10			0	84.3 79.2						
Bis(2-chloroethoxy)me		10			0	79.2						
Bis(2-chloroethyl)ether		10			0	75.6						
Bis(2-chloroisopropyl)		10			0	105						
Bis(2-ethylhexyl)phtha		1(0							
Butyl benzyl phthalate	41.47	1() 50		0	06.3	07.0102	00				

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 14 of 31

CLIENT: Terracon Consulting Engineers & Scientist 0609302 Work Order:

÷

9206747/North Velasco **Project:**

Batch ID: 19941	Instrument ID: SV-2		Method:	SW8270					
Carbazole	40.16	10	50	0	80.3	65.5-130	36.43	9.75	20
Chrysene	39.52	10	50	0	79	62.4-125	36.03	9.24	20
Di-n-butyl phthalate	41.32	10	50	0	82.6	64.6-133	37.33	10.1	20
Di-n-octyl phthalate	40.63	10	50	0	81.3	49.7-152	36.9	9.62	20
Dibenz(a,h)anthracene	39.81	10	50	0	79.6	49.2-136	35.65	11	20
Dibenzofuran	38.63	10	50	0	77.3	64.3-122	34.87	10.2	20
Diethyl phthalate	40.27	10	50	0	80.5	62.7-129	36.31	10.3	20
Dimethyl phthalate	39.65	10	50	0	79.3	63.7-126	36.67	7.82	20
Fluoranthene	39.57	10	50	0	79.1	61.2-128	35.09	12	20
Fluorene	39.44	10	50	0	78.9	64.9-121	35.27	11.2	20
Hexachlorobenzene	39.97	10	50	0	79.9	65.6-126	37.16	7.27	20
Hexachlorobutadiene	39.11	10	50	0	78.2	46.1-121	35.82	8.78	20
Hexachlorocyclopentadiene	31.61	10	50	0	63.2	43.4-120	28.72	9.6	20
Hexachloroethane	38.1	10	50	0	76.2	60-115	35.14	8.07	20
Indeno(1,2,3-cd)pyrene	38.27	10	50	0	76.5	50.3-123	35.2	8.37	20
Isophorone	38.97	10	50	0	77.9	62-121	36	7.93	20
N-Nitrosodi-n-propylamine	39.74	10	50	0	79.5	59.7-116	36.77	7.77	20
N-Nitrosodiphenylamine	40.59	10	50	0	81.2	65.1-136	37.96	6.71	20
Naphthaiene	38.97	10	50	0	77,9	59.9-115	35.52	9.27	20
Nitrobenzene	38.76	10	50	0	77.5	59.1-134	35.13	9.83	20
Pentachlorophenol	88.01	10	100	0	88	51.3-134	80.38	9.06	20
Phenanthrene	39.24	10	50	0	78.5	65.2-122	36.21	8.03	20
Phenol	91.36	10	100	0	91.4	16-115	83.38	9.14	20
Pyrene	39.35	10	50	0	78.7	59.7-121	36.76	6.83	20
Surr: 2,4,6-Tribromophen	ol 74.63	10	100	0	74.6	3 9 -153	70.64	5.49	20
Surr: 2-Fluorobiphenyl	73.62	10	100	0	73.6	40-147	66.55	10.1	20
Surr: 2-Fluorophenol	68.44	10	100	0	68.4	21-110	62.67	8.8	20
Surr: 4-Terphenyl-d14	77.53	10	100	0	77.5	39-141	71.83	7.64	20
Surr: Nitrobenzene-d5	73.48	10	100	0	73.5	37-140	67.16	8.99	20
Surr: Phenol-d6	73.05	10	100	0	73	11-100	66.42	9.5	20
The following samples we	re analyzed in this batch:	060	9302-01D	06093	02-02D				

The following samples were analyzed in this batch:

0609302-01D 0609302-02D

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 15 of 31

CLIENT: Terracon Consulting Engineers & Scientist Work Order: 0609302

QC BATCH REPORT

Project: 9206747/North Velasco

MBLK Sample ID:	VBLKW-060922					Ur	nits: µg/L		Analysis D	ate: 09/22	/06 15:58
Client ID:		Run I	D: VOA2_(060922A		SeqNo: 9558	65	Prep Date:		DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	MQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane		U	5.0								
1,1,2,2-Tetrachloroethane		Ū	5.0								
1,1,2-Trichloroethane		U	5.0								
1,1-Dichloroethane		U	5.0								
1,1-Dichloroethene		U	5.0								
1,2,4-Trimethylbenzene		U	5.0								
1,2-Dichloroethane		U	5.0								
1,2-Dichloropropane		Ű	5.0								
1,3,5-Trimethylbenzene		U	5.0								
2-Butanone		Ŭ	10								
2-Hexanone		U	10								
4-Methyl-2-pentanone		Ŭ	10								
Acetone		U	10								
Benzene		U	5.0								
Bromodichloromethane	·····	U	5.0								
Bromoform		Ū	5.0								
Bromomethane		U	5.0								
Carbon disulfide		U	10								
Carbon tetrachloride		U	5.0								
Chlorobenzene		Ū	5.0								
Chloroethane	******	U	5.0								
Chloroform		U	5.0								
Chloromethane		U	5.0								
cis-1,2-Dichloroethene		U	5.0								
cis-1,3-Dichloropropene		U	5.0								
Dibromochloromethane		U	5.0								
Ethylbenzene		U	5.0						······	······	······
m,p-Xylene		U	10								
Methyl tert-butyl ether		U	5.0							******	
Methylene chloride		Ŭ	10								
n-Butylbenzene		U	5.0								
Naphthalene		Ŭ	5.0								
o-Xylene	······································	<u></u>	5.0								
sec-Butylbenzene		U	5.0								
Styrene		<u> </u>	5.0					·····			
Tetrachloroethene		U	5.0								
Toluene	·····	U	5.0		h				******		
trans-1,2-Dichloroethene		U	5.0								
trans-1,3-Dichloropropene		U	5.0			^					
Trichloroethene		Ŭ	5.0								

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in assoc. Method Blank
 U - Analyzed for but not detected

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

P - Dual Column results percent difference > 40%

E - Value above quantitation range QC Page: 16 of 31

CLIENT: Terracon Consulting Engineers & Scientist Work Order: 0609302

QC BATCH REPORT

Project:	9206747/North Velasco

Batch ID: R41972	Instrument ID: VOA2		Method:	SW8260				
Vinyl chloride	U	2.0						
Xylenes, Total	U	15						
Surr: 1,2-Dichloroethane	-d4 44.95	5.0	50	0	89.9	70-125	0	
Surr: 4-Bromofluorobenz		5.0	50	0	84.9	72.4-125	0	
Surr: Dibromofluorometh		5.0	50	0	88.2	71.2-125	0	
Surr: Toluene-d8	46.96	5.0	50	0	93.9	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 17 of 31

QC BATCH REPORT

 Work Order:
 0609302

 Project:
 9206747/North Velasco

					: SW826							
LCS Sample ID:	VLCSW-60922						U	nits: µg/L		Analysis D	ate: 09/22	/06 15:07
Client ID:		Run I	D: VOA2_C)60922A		Sec	No: 955	864	Prep Date:	DF: 1		
Amatula		Booult	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	IVIQL	SFR Vai								
1,1,1-Trichloroethane		48.64	5.0	50		0	97.3	79.6-120		0		
1,1,2,2-Tetrachloroethane		49.24	5.0	50		0	98.5	78.9-121		0		
1,1,2-Trichloroethane		47.29	5.0	50		0	94.6	80-120		0		
1,1-Dichloroethane		47.36	5.0	50		0	94.7	74.2-122		0		
1,1-Dichloroethene		49.01	5.0	50		0	98	75.8-122		0		
1,2,4-Trimethylbenzene		51.37	5.0	50		0	103	80-120		0		
1,2-Dichloroethane		48.81	5.0	50		0	97.6	78.8-120		0		
1,2-Dichloropropane		45.25	5.0	50		0	90.5	80-120		0		
1,3,5-Trimethylbenzene		51.8	5.0	50		0	104	80-120		0		
2-Butanone		91.58	10	100		0	91.6	69.2-131		0		
2-Hexanone		102.1	10	100		0	102	59.1-135		0		
4-Methyl-2-pentanone		94.59	10	100		0	94.6	71.6-124		0		
Acetone		89.11	10	100		0	89.1	60.1-141		0		
Benzene		44.82	5.0	50		0	89.6	80-120		0		
Bromodichloromethane		48.26	5.0	50		0	96.5	80-120		0		
Bromoform		47.62	5.0	50		0	95.2	78.1-120		0		
Bromomethane		46.34	5.0	50		0	92.7	52.8-147		0		
Carbon disulfide		100.1	10	100		0	100	78.8-120		0		
Carbon tetrachloride		46.88	5.0	50		0	93.8	76.8-120		0		
Chiorobenzene		47.4	5.0	50		0	94.8	80-120		0		
Chloroethane		48.17	5.0	50		0	96.3	74.2-120		0		
Chloroform		47.24	5.0	50		0	94.5	80-120		0		
Chloromethane		47.69	5.0	50		0	95.4	63.5-133		0		
cis-1,2-Dichloroethene		48.54	5.0	50		0	97.1	80-120		0		
cis-1,3-Dichloropropene		50.04	5.0	50		0	100	80-120		0		
Dibromochloromethane		51	5.0	50		0	102	80-120		0		
Ethylbenzene		50.03	5.0	50		0	100	80-120		0		
m,p-Xylene		100.8	10	100		0	101	80-120		0		
Methyl tert-butyl ether		49.99	5.0	50		0	100	75.8-123		0		
Methylene chloride		45.97	10	50		0	91.9	74.7-120		0		
n-Butylbenzene		52.47	5.0	50		0	105	80-120		0		
Naphthalene		51.96	5.0	50		0	104	71.4-124		0		
o-Xylene		50.17	5.0	50		0	100	80-120		0		
sec-Butylbenzene		52.1	5.0	50		0	104	80-120		0		
Styrene		51.56	5.0	50		0	103	80-120		0		
Tetrachloroethene		48.12	5.0	50		0	96.2	80-120		0		
Toluene		49.47	5.0	50		0	98.9	80-120		0		
trans-1,2-Dichloroethene		48.6	5.0	50		0	97.2	75.9-122		0		
trans-1,3-Dichloropropene	3	51.06	5.0	50		0	102	80-120		0		
Trichloroethene		47.36	5.0	50		0	94.7	80-120		0		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302Project:9206747/North Velasco

Batch ID: R41972	Instrument ID: VOA2		Method:	SW8260			
/inyl chloride	48.17	2.0	50	0	96.3	76.2-121	0
(ylenes, Total	150.9	15	150	0	101	80-120	0
Surr: 1,2-Dichloroethane-d	4 43.68	5.0	50	0	87.4	70-125	0
Surr: 4-Bromofluorobenzer	ne 46.02	5.0	50	0	92	72.4-125	0
Surr: Dibromofluoromethar	e 44.62	5.0	50	0	89.2	71.2-125	0
Surr: Toluene-d8	46.82	5.0	50	0	93.6	75-125	0

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range
 - QC Page: 19 of 31

QC BATCH REPORT

 Work Order:
 0609302

 Project:
 9206747/North Velasco

atch ID: R41972	Instrument ID: V	DA2		Method	SW8260							
IS Sample ID:	0609289-01AMS						Ur	nits: µg/L		Analysis D	ate: 09/22	/06 17:1/
lient ID:		Run I	D: VOA2_0	60922A	5	Seql	No: 9558	68	Prep Date:	DF: 100		
				ODK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
nalyte		Result	MQL	SPK Val			76KLO					
1,1-Trichloroethane		4372	500	5000	(D	87.4	79.6-120		0		
1,2,2-Tetrachioroethane		5299	500	5000		0	106	78.9-121		0		
,1,2-Trichloroethane		5076	500	5000		0	102	80-120		0		
,1-Dichloroethane		4710	500	5000		0	94.2	74.2-122		0		
,1-Dichloroethene		4119	500	5000		0	82.4	75.8-122		0		
,2,4-Trimethylbenzene		4450	500	5000		0	89	80-120		0		
,2-Dichloroethane		5585	500	5000		0	112	78.8-120		0		
,2-Dichloropropane		4991	500	5000		0	99.8	80-120		0		
,3,5-Trimethylbenzene		4385	500	5000		0	87.7	80-120		0		
-Butanone		10350	1,000	10000		0	103	69.2-131		0		
-Hexanone		10790	1,000	10000		0	108	59.1-135		0		
-Methyl-2-pentanone		10380	1,000	10000		0	104	71.6-124		0		
\cetone		10440	1,000	10000		0	104	60.1-141		0		
3enzene		4644	500	5000		0	92.9	80-120		0		
Bromodichloromethane		5271	500	5000		0	105	80-120		0		
3romoform		4968	500	5000		0	99.4	78.1-120		0		
Bromomethane		4487	500	5000		0	89.7	52.8-147		0		s
Carbon disulfide		7862	1,000	10000		0	78.6	78.8-120		0		<u> </u>
Carbon tetrachloride		4178	500	5000		0	83.6	76.8-120		0		
Chlorobenzene		4997	500	5000	202		95.9	80-120		0		
Chloroethane		4512	500	5000		0	90.2	74.2-120	ł	0		
Chloroform		6218	500	5000	796		108	80-120		0		
Chloromethane		4678	500	5000		0	93.6	63.5-133	5	0		
cis-1,2-Dichloroethene		4813	500	5000		0	96.3	80-120		0		
cis-1,3-Dichloropropene		5196	500	5000		0	104	80-120				
Dibromochloromethane		5297	500	5000		0	106	80-120		0		
Ethylbenzene		4573	500	5000		0	91.5	80-120		0 0		
m,p-Xylene		9169	1,000	10000		0	91.7	80-120	<u>.</u>	0		
Methyl tert-butyl ether		5108	500	5000		0	102	75.8-12		÷		
Methylene chloride	······	5218	1,000	5000	113		102	74.7-12		0		s
n-Butylbenzene		3954	500			0	79.1	80-120				3
Naphthalene		4388	500	5000		0	87.8	71.4-12		0		
o-Xylene		4759	500			0	95.2					
sec-Butylbenzene		4096	500			0	81.9			0		s
Styrene		2846	500			0	56.9					0
Tetrachloroethene		4131	500			0	82.6			00		
Toluene		4632	500			0	92.6					
trans-1,2-Dichloroethene		4494	500			0	89.9			0		
trans-1,3-Dichloropropen	e	5197	500	5000		0	104	80-120	,	U		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 20 of 31

CLIENT: Terracon Consulting Engineers & Scientist Work Order: 0609302

QC BATCH REPORT

Work Order:	0609302
Project:	9206747/North Velasco

Batch ID: R41972	Instrument ID: N	/OA2		Method:	SW8260				
Vinvi chloride		4119	200	5000	0	82.4	76.2-121	0	
Xylenes, Total		13930	1,500	15000	0	92.9	80-120	0	
Surr: 1.2-Dichloroethal	ne-d4	4596	500	5000	0	91.9	70-125	0	
Surr: 4-Bromofluorobe		4659	500	5000	0	93.2	72.4-125	0	
Surr: Dibromofluorome	thane	4650	500	5000	0	93	71.2-125	0	
Surr: Toluene-d8		4635	500	5000	0	92.7	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

CLIENT: Terracon Consulting Engineers & Scientist 0609302 Work Order:

9206747/North Velasco **Project:**

MSD	Sample ID:	0609289-01AMSD					Units: µg/L		Analysis Da	ite: 09/22/	06 17:3
Client ID:		Run	ID: VOA2_(060922A	ę	SegNo: 9		Prep Date:		DF: 100	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichlor	oethane	4314	500	5000) 86.3	3 79.6-120	4372	1.34	20	
1,1,2,2-Tetrac		5375	500	5000) 108		5299		20	
1,1,2-Trichlor		5162	500	5000	(5076		20	
1.1-Dichloroel		4792	500	5000) 95.8				20	
1,1-Dichloroel		4167	500	5000		0 83.4				20	
1,2,4-Trimeth		4864	500	5000) 97.3		4450		20	
1,2-Dichloroel	•	5271	500	5000	(0 10				20	
1,2-Dichlorop		4958	500	5000		0 99.3		4991		20	
1,3,5-Trimeth	,	4805	500	5000	(D 96. ⁻	80-120	4385	9.14	20	
2-Butanone		10750	1,000	10000		0 10		10350		20	
2-Hexanone		11270	1,000	10000	(D 11:	3 59.1-135	10790	4.37	20	
4-Methyl-2-pe	entanone	10750	1,000	10000	(0 10	3 71.6-124	10380	3.57	20	
Acetone		11130	1,000	10000	(0 11	60.1-141	10440	6.39	20	
Benzene		4629	500	5000	(0 92.0	6 80-120	4644	0.317	20	
Bromodichlor	omethane	5295	500	5000	(0 10	6 80-120	5271	0.454	20	
Bromoform		5090	500	5000	(0 10	2 78.1-120	4968	2.42	20	
Bromomethar	ne	4951	500	5000	(0 9	9 52.8-147	4487	9.83	20	
Carbon disulf		7627	1,000	10000		0 76.3	3 78.8-120	7862	3.05	20	S
Carbon tetrac	hloride	3956	500	5000	(0 79.	1 76.8-120	4178	5.47	20	
Chlorobenzen	ne	4949	500	5000	202.8	8 94.	9 80-120	4997	0.955	20	
Chloroethane	•	4656	500	5000	(0 93.	1 74.2-120	4512	3.13	20	
Chloroform		6145	500	5000	796.4	4 10	7 80-120	6218	1.18	20	
Chloromethar	ne	4726	500	5000	(0 94.	5 63.5-133	4678	1.01	20	
cis-1,2-Dichlo	proethene	4877	500	5000	(0 97.	5 80-120	4813	1.32	20	
cis-1,3-Dichlo	propropene	5268	500	5000	(0 10	5 80-120	5196	5 1.38	20	
Dibromochlor	omethane	5465	500	5000	(0 10	9 80-120	5297	7 3.13	20	
Ethylbenzene	;	4753	500	5000	(0 95.	1 80-120	4573	3.86	20	
m,p-Xylene		9488	1,000	10000	(0 94.	9 80-120	9169	3.42	20	
Methyl tert-bu	ityl ether	5389	500	5000	(0 10	8 75.8-123	5108	5.36	20	
Methylene chi	loride	5357	1,000	5000	113.	2 10	5 74.7-120	5218	3 2.62	20	
n-Butylbenzei	ne	4324	500	5000	(0 86.	5 80-120	3954	8.94	20	
Naphthalene		5241	500	5000	l	0 10	5 71.4-124	4388	3 17.7	20	
o-Xylene		4969	500	5000		0 99.	4 80-120	4759	4.32	20	
sec-Butylben	zene	4386	500	5000	1	0 87.	7 80-120	4096	6.84	20	
Styrene		3904	500	5000		0 78.	1 80-120	2846	31.4	20	SR
Tetrachloroet	hene	4168	500	5000	(0 83.	4 80-120	413	0.892	20	
Toiuene		4723	500	5000		0 94.	5 80-120	4632	2 1.95	20	
trans-1,2-Dic	hioroethene	4596	500	5000		0 91.	9 75.9-122	4494	2.26	20	
trans-1,3-Dic	hloropropene	5388	500	5000		0 10	8 80-120	5197	7 3.62	20	
Trichloroethe		4442	500	5000		0 88.	8 80-120	4547	7 2.34	20	

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

 $\ensuremath{\mathfrak{I}}$ - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

P - Dual Column results percent difference > 40%

R - RPD outside accepted recovery limits

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 22 of 31

Terracon Consulting Engineers & Scientist **CLIENT:** 0609302 Work Order: 9206747/North Velasco **Project:**

Instrument ID: VOA2		Method:	SW8260					
4195	200	5000	0	83.9	76.2-121	4119	1.84	20
	1,500	15000	0	96.4	80-120	13930	3.73	20
	500	5000	0	93.5	70-125	4596	1.75	20
		5000	0	94	72.4-125	4659	0.857	20
3,12,0,10		5000	0	93,4	71.2-125	4650	0.435	20
4673	500	5000	0	93.5	75-125	4635	0.827	20
	4195 14460 ane-d4 4677 enzene 4699 ethane 4670	4195 200 14460 1,500 ane-d4 4677 500 enzene 4699 500 ethane 4670 500	4195 200 5000 14460 1,500 15000 ane-d4 4677 500 5000 enzene 4699 500 5000 ethane 4670 500 5000	4195 200 5000 0 14460 1,500 15000 0 ane-d4 4677 500 5000 0 enzene 4699 500 5000 0 ethane 4670 500 5000 0	4195 200 5000 0 83.9 14460 1,500 15000 0 96.4 ane-d4 4677 500 5000 0 93.5 enzene 4699 500 5000 0 93.4 ethane 4670 500 5000 0 93.4	4195 200 5000 0 83.9 76.2-121 14460 1,500 15000 0 96.4 80-120 ane-d4 4677 500 5000 0 93.5 70-125 enzene 4699 500 5000 0 93.4 71.2-125 ethane 4670 500 5000 0 93.4 71.2-125	4195 200 5000 0 83.9 76.2-121 4119 14460 1,500 15000 0 96.4 80-120 13930 ane-d4 4677 500 5000 0 93.5 70-125 4596 enzene 4699 500 5000 0 93.4 71.2-125 4659 ethane 4670 500 5000 0 93.4 71.2-125 4650	4195 200 5000 0 83.9 76.2-121 4119 1.84 14460 1,500 15000 0 96.4 80-120 13930 3.73 ane-d4 4677 500 5000 0 93.5 70-125 4596 1.75 enzene 4699 500 5000 0 94 72.4-125 4659 0.857 ethane 4670 500 5000 0 93.4 71.2-125 4650 0.435

The following samples were analyzed in this batch:

0609302-02A

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 23 of 31

Terracon Consulting Engineers & Scientist **CLIENT:**

QC BATCH REPORT

Work Order: 0609302 9206747/North Velasco **Project:**

Batch ID: R42053 In:	strument ID: VOA1		Method	I: SW826	U					
BLK Sample ID: VBL					U	nits: µg/L	•	Analysis D	ate: 09/25	/06 12:44
lient ID:	Run II	D: VOA1_0)60925A		SeqNo: 9573	328	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	MQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
	U	5.0								
1,1,1-Trichloroethane	<u>U</u>	5.0								
1,1,2,2-Tetrachloroethane	U	5.0								
1,1,2-Trichloroethane	<u>U</u>	5.0								
1,1-Dichloroethane 1,1-Dichloroethene	Ŭ	5.0								
1,2,4-Trimethylbenzene	U	5.0								
1,2-Dichloroethane	U	5.0								
1,2-Dichloropropane	<u>_</u> U	5.0			*****					
1,3,5-Trimethylbenzene	Ű	5.0								
2-Butanone	U	10								
	Ŭ	10								
2-Hexanone 4-Methyl-2-pentanone	U	10								
Acetone	- U	10								
Benzene	U	5.0								
Bromodichloromethane	Ŭ	5.0								
Bromoform	U	5.0								
Bromomethane	Ŭ	5.0								
Carbon disulfide	U	10								
Carbon tetrachloride	Ű	5.0								
Chlorobenzene	 U	5.0								
Chioroethane	U	5.0								
Chloroform	 ບ	5.0			***************************************					
Chioromethane	U	5.0								
cis-1,2-Dichloroethene	<u>.</u> ປ	5.0								
cis-1,3-Dichloropropene	U	5.0								
Dibromochloromethane	U	5.0								
Ethylbenzene	Ű	5.0								
	U	10								
m,p-Xylene Methyl tort bubl ether	Ŭ	5.0								
Methyl tert-butyl ether Methylene chloride	U	10			*****					
•	U	5.0								
n-Butylbenzene Naphthalene	<u>ບ</u>	5.0								
o-Xylene	U	5.0								
sec-Butylbenzene	U	5.0								
Styrene	U	5.0								
Tetrachioroethene	ູ ປ	5.0								
Toluene	Ű	5.0								
trans-1,2-Dichloroethene	<u>v</u>	5.0			***************************************					
trans-1,3-Dichloropropene	Ű	5.0								
Trichloroethene	U	5.0								
ND - Not Detected at the Repor	ting Limit	S -	Spike Recov	ery outside a	accepted recove	ry limits	B - Analy	te detected in a	assoc. Meth	od Blank
the store protocol at all report			-		oovery limite		TT Anoly	zed for but not	t detected	

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range QC Page: 24 of 31

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302Project:9206747/North Velasco

Batch ID: R42053 Ins	trument ID: VOA1		Method:	SW8260				
Vinyl chloride	U	2.0						
Xylenes, Total	U	15						
Surr: 1,2-Dichloroethane-d4	46.56	5.0	50	0	93.1	70-125	0	
Surr: 4-Bromofluorobenzene	56.67	5.0	50	0	113	72.4-125	0	
Surr: Dibromofluoromethane	51.12	5.0	50	0	102	71.2-125	0	
Surr: Toluene-d8	51.41	5.0	50	0	103	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range
 - QC Page: 25 of 31

QC BATCH REPORT

Work Order: 0609302

Project: 9206747/North Velasco

CS Sample ID: lient ID:	VLCSW-060925											
•							Ui	nits: µg/L		Analysis D	ate: 09/25	06 11:48
10,11, 10,		Run II	D: VOA1_0	60925A		Seq	No: 9573	326	Prep Date:		DF: 1	
			-		SPK Ref			Control	RPD Ref		RPD	
nalyte		Result	MQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Quai
1,1-Trichloroethane		49.56	5.0	50		0	99.1	79.6-120		0		
1,2,2-Tetrachloroethane		43.66	5.0	50		0	87.3	78.9-121		0		
,1,2-Trichloroethane		45.68	5.0	50		0	91.4	80-120		0		
,1-Dichloroethane		45.71	5.0	50		0	91.4	74.2-122		0		
,1-Dichloroethene		44.62	5.0	50		0	89.2	75.8-122		0		
,2,4-Trimethylbenzene		44.06	5.0	50		0	88.1	80-120		0		
,2-Dichloroethane	******	48.62	5.0	50		0	97.2	78.8-120		0		
,2-Dichloropropane		46.78	5.0	50		0	93.6	80-120		0		
,3,5-Trimethylbenzene		43.24	5.0	50		0	86.5	80-120		0		
2-Butanone		85.42	10	100		0	85.4	69.2-131		0		
2-Hexanone		87.7	10	100		0	87.7	59.1-135		0		
-Methyl-2-pentanone		86.68	10	100		0	86.7	71.6-124		0		
Acetone		89.59	10	100		0	89.6	60.1-141		0		
Benzene		46.96	5.0	50		0	93.9	80-120		0		
Bromodichloromethane		51.92	5.0	50		0	104	80-120		0		
Bromoform		45.98	5.0	50		0	92	78.1-120	•	0		
Bromomethane		45.72	5.0	50		0	91.4	52.8-147	•	0		
Carbon disulfide		81.11	10	100		0	81.1	78.8-120)	0		
Carbon tetrachloride		46.26	5.0	50		0	92.5	76.8-120)	0		
Chlorobenzene		47.2	5.0	50		0	94.4	80-120		0		
Chloroethane		46.31	5.0	50		0	92.6	74.2-120)	0		
		49	5.0	50		0	98	80-120		0		
Chloroform		45.38	5.0	50		0	90.8	63.5-13	3	0		
Chloromethane		48.37	5.0	50		0	96.7	80-120		0		
cis-1,2-Dichloroethene		49.07	5.0	50		0	98.1	80-120		0		
cis-1,3-Dichloropropene		51.09	5.0	50		0	102	80-120		0		
Dibromochloromethane		45.72	5.0			0	91.4	80-120		0		
Ethylbenzene		45.72 91.51	0.0 10			õ	91.5	80-120		0		
m,p-Xylene		48.41	5.0			0	96.8	75.8-12		0		
Methyl tert-butyl ether		47.09	10			0	94.2			0		
Methylene chloride		41.39	5.0			0	82.8			0		
n-Butylbenzene		41.39	5.0			0	87.7			0		
Naphthalene		45.65	5.0			0	92.6			0		
o-Xylene		40.20 40.52	5.0			0	81			0		
sec-Butylbenzene		40.52	5.0			0	94.6			0		~
Styrene		47.29 44.42	5.0			0	88.8			0		
Tetrachloroethene			5.0			0	92.5			0		
Toluene		46.24				0	92.5			0		
trans-1,2-Dichloroethene		46.27	5.0			0	101			0		
trans-1,3-Dichloropropen Trichloroethene	e	50.64 47.72	5.0 5.0			0	95.4			0		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

U - Analyzed for but not detected

P - Dual Column results percent difference > 40%

R - RPD outside accepted recovery limits

E - Value above quantitation range

QC Page: 26 of 31

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302Project:9206747/North Velasco

Batch ID: R42053	Instrument ID: VOA1		Method:	SW8260				
Vinyl chloride	45.49	2.0	50	0	91	76.2-121	0	
Xylenes, Total	137.8	15	150	0	91.9	80-120	0	
Surr: 1,2-Dichloroethan	e-d4 46.91	5.0	50	0	93.8	70-125	0	
Surr: 4-Bromofluoroben	zene 55.84	5.0	50	0	112	72.4-125	0	
Surr: Dibromofluoromet	hane 51.24	5.0	50	0	102	71.2-125	0	
Surr: Toluene-d8	51.73	5.0	50	0	103	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 27 of 31

Terracon Consulting Engineers & Scientist **CLIENT:**

QC BATCH REPORT

Work Order: 9206747/North Velasco **Project:**

0609302

Batch ID: R42053	Instrument ID: V	'OA1		Method	i: SW8260						
MS Sample I	D: 0609300-01AMS					ι	Jnits: µg/L		Analysis D	ate: 09/25	/06 16:5
Client ID:		Run I	D: VOA1_0	60925A	S	eqNo: 957	'343	Prep Date:		DF: 1	
		Denvill	MOI	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	MQL	SFIC Val							
1,1,1-Trichloroethane		45.86	5.0	50	0	91.7	79.6-120		0		
1,1,2,2-Tetrachloroethar	e	45.27	5.0	50	0	90.5	78.9-121		0		
1,1,2-Trichloroethane		47.86	5.0	50	0	95.7	80-120		0		
1,1-Dichloroethane		46.36	5.0	50	0	92.7	74.2-122		0		
1,1-Dichloroethene		44.79	5.0	50	0	89.6	75.8-122		0		
1,2,4-Trimethylbenzene		38.37	5.0	50	0	76.7	80-120		0		S
1,2-Dichloroethane		49.92	5.0	50	0	99.8	78.8-120		0		
1,2-Dichloropropane		47.47	5.0	50	0	94.9	80-120		0		
1,3,5-Trimethylbenzene		38.53	5.0	50	0		80-120		0		S
2-Butanone		92.7	10	100	0	92.7	69.2-131		0		
2-Hexanone		94.73	10	100	0	94.7	59.1-135		0		
4-Methyl-2-pentanone		95.45	10	100	0	95.4	71.6-124		0		
Acetone		89.26	10	100	0	89.3	60.1-141		0		
Benzene		44.6	5.0	50	0	89.2	80-120		0		
Bromodichloromethane		49.51	5.0	50	0	99	80-120		0		
Bromoform		45.38	5.0	50	0	90.8	78.1-120		0		
Bromomethane		56.28	5.0	50	0	113	52.8-147	·	0		
Carbon disulfide		111.5	10	100	0	111	78.8-120		0		
Carbon tetrachloride		43.78	5.0	50	0	87.6	76.8-120		0		
Chlorobenzene		43.03	5.0	50	0	86.1	80-120		0		
Chloroethane		44.25	5.0	50	0	88.5	74.2-120	i	0		
Chloroform		47.09	5.0	50	0	94.2	80-120		0		
Chloromethane		47.89	5.0	50	0	95.8	63.5-133		0		
cis-1,2-Dichloroethene		47.64	5.0	50	0	95.3	80-120		0		
cis-1,3-Dichloropropen	•	48,41	5.0	50	C	96.8	80-120		0		
Dibromochloromethane		49.54	5.0	50	C	99.1	80-120		0		
Ethylbenzene		40.53	5.0	50	0	81.1	80-120		0		
m,p-Xylene		81.15	10	100	C) 81.2	80-120		0		
Methyl tert-butyl ether		49.79	5.0	50	0) 99.6	75.8-123	3	0		
Methylene chloride		46.22	10	50	0.5033	3 91.4	74.7-120)	0		
n-Butylbenzene		37.82	5.0	50) 75.6	80-120		0		S
Naphthalene		41.28	5.0	50	() 82.6	5 71.4-124	ţ	0		
o-Xylene		41.7	5.0	50	() 83.4	80-120		0		
sec-Butylbenzene		36.07	5.0	50	() 72.1	80-120		0		S
Styrene		42.93	5.0	50	() 85.9	80-120		0		
Tetrachloroethene		41.42	5.0	50	() 82.8	80-120		0		
Toluene		43.2	5.0	50	() 86.4	80-120		0		
trans-1,2-Dichloroether	10	45.1	5.0	50	() 90.2	2 75.9-12	2	0		
trans-1,3-Dichloroprop		49.78	5.0		() 99.6	80-120		0		
Trichloroethene		47.7	5.0		() 95.4	\$ 80-120		0		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

E - Value above quantitation range

QC Page: 28 of 31

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302Project:9206747/North Velasco

Batch ID: R42053	instrument	D: VOA1		Method:	SW8260				
Vinyl chloride		42.79	2.0	50	0	85.6	76.2-121	0	
Xylenes, Total		122.8	15	150	0	81.9	80-120	0	
Surr: 1,2-Dichloroethal	ne-d4	54.45	5.0	50	0	109	70-125	0	
Surr: 4-Bromofluorobe	nzene	53.5	5.0	50	0	107	72.4-125	0	
Surr: Dibromofluorome	ethane	56.56	5.0	50	0	113	71.2-125	0	
Surr: Toluene-d8		53.99	5.0	50	0	108	75-125	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range

QC Page: 29 of 31

Terracon Consulting Engineers & Scientist **CLIENT:**

QC BATCH REPORT

Work Order: 0609302 9206747/North Velasco **Project:**

MSD Sample ID:	0609300-01AMSD					U	nits: µg/L	F	nalysis Da	te: 09/25/	06 17:17
Client ID:	F	Run ID: VOA1_	060925A		SeqN	lo: 9573	345	Prep Date:		DF: 1	
Analyte	Resul	t MQL	SPK Val	SPK Ref Value	(%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
.1.1-Trichloroethane	48.89	9 5.0	50		0	97.8	79.6-120	45.86	6.4	20	
1,1,2,2-Tetrachloroethane	49.16		50		0	98.3	78.9-121	45.27	8.23	20	
1,1,2,2-Trichloroethane	49.5		50		0	99.2	80-120	47.86	3.54	20	
1,1-Dichloroethane	49.1		50		0	98.2	74.2-122	46.36	5.76	20	
1,1-Dichloroethene	44.8		50		0	89.6	75.8-122	44.79	0.0498	20	
1,2,4-Trimethylbenzene	46.3		50		0	92.6	80-120	38.37	18.8	20	
1,2-Dichloroethane	53.3		50		0	107	78.8-120	49.92	6.6	20	
1,2-Dichloropropane	48.8		50		0	97.7	80-120	47.47	2.88	20	
1,3,5-Trimethylbenzene	45.0		50		0	90.1	80-120	38.53	15.6	20	
2-Butanone	88.2		100		0	88.2	69.2-131	92.7	4.94	20	
2-Hexanone	94.9		100	. <u></u>	0	94.9	59.1-135	94.73	0.211	20	
4-Methyl-2-pentanone	94.5	7 10	100		0	94.6	71.6-124	95.45	0.925	20	
Acetone	94.0	9 10	100		0	94.1	60.1-141	89.26	5.26	20	
Benzene	50.6	4 5.0	50		0	101	80-120	44.6	12.7	20	
Bromodichloromethane	54.5	4 5.0	50		0	109	80-120	49.51	9.67	20	
Bromoform	. 48.:	2 5.0	50		0	96.4	78.1-120	45.38	6.02	20	
Bromomethane	55.5	6 5.0	50		0	111	52.8-147	56.28	1.28	20	
Carbón disulfide	116.	8 10	100		0	117	78.8-120	111.5	4.64	20	
Carbon tetrachloride	44.9	9 5.0	50		0	90	76.8-120	43.78	2.73	20	
Chlorobenzene	48.4	9 5.0	50		0	97	80-120	43.03	11.9	20	
Chloroethane	50.7	1 5.0	50		0	101	74.2-120	44.25	13.6	20	
Chloroform	51.8	3 5.0	50		0	104	80-120	47.09	9.59	20	
Chloromethane	55.6	4 5.0	50		0	111	63.5-133	47.89	15	20	
cis-1,2-Dichloroethene	50.2	6 5.0	50		0	101	80-120	47.64	5.35	20	
cis-1,3-Dichloropropene	51.6	6 5.0	50		0	103	80-120	48.41	6.5	20	
Dibromochloromethane	53.0	4 5.0	50		0	106	80-120	49.54	6.82	20	
Ethylbenzene	47.1	3 5.0	50		0	94.3	80-120	40.53	15	20	
m,p-Xylene	94.4	1 10	100		0	94.4	80-120	81.15	15.1	20	
Methyl tert-butyl ether	51.7	1 5.0	50		0	103	75.8-123	49.79	3.78	20	
Methylene chloride	50.5	6 10	50	0.50)33	100	74.7-120	46.22	8.96	20	
n-Butylbenzene	42.7	1 5.0	50		0	85.4	80-120	37.82	12.1	20	
Naphthalene	48.8	5 5.0	50		0	97.7	71.4-124	41.28	16.8	20	
o-Xylene	48.1	1 5.0	50		0	96.2	80-120	41.7	14.3	20	
sec-Butylbenzene	42.0	5 5.0	50		0	84.1	80-120	36.07			
Styrene	48.9	2 5.0	50		0	97.8	80-120	42.93	13.1	20	
Tetrachloroethene	45.7	8 5.0	50		0	91.6	80-120	41.42	9.99	20	
Toluene	47.6	3 5.0	50		0	95.3	80-120	43.2	9.76	20	
trans-1,2-Dichloroethene	49	2 5.0	50		0	98.4	75.9-122	,,,,			
trans-1,3-Dichloropropene	e 54.3	8 5.0	50		0	109	80-120	49.78	8.83	20	
Trichloroethene	50	.5 5.0	50		0	101	80-120	47.7	5.7	20	

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in assoc. Method Blank

J - Analyte detected below quantitation limits

O - Referenced analyte value is > 4 times amount spiked

R - RPD outside accepted recovery limits

P - Dual Column results percent difference > 40%

U - Analyzed for but not detected

CLIENT:Terracon Consulting Engineers & ScientistWork Order:0609302Project:9206747/North Velasco

Batch ID: R42053	Instrument	ID: VOA1		Method:	SW8260					
Vinyl chloride		45.41	2.0	50	0	90.8	76.2-121	42.79	5.95	20
Xylenes, Total		142.5	15	150	0	95	80-120	122.8	14.8	20
Surr: 1,2-Dichloroetha	ne-d4	54.2	5.0	50	0	108	70-125	54.45	0.46	20
Surr: 4-Bromofluorobe	nzene	53.4	5.0	50	0	107	72.4-125	53.5	0.177	20
Surr: Dibromofluorome	ethane	56.08	5.0	50	0	112	71.2-125	56.56	0.857	20
Surr: Toluene-d8		54.64	5.0	50	0	109	75-125	53.99	1.21	20

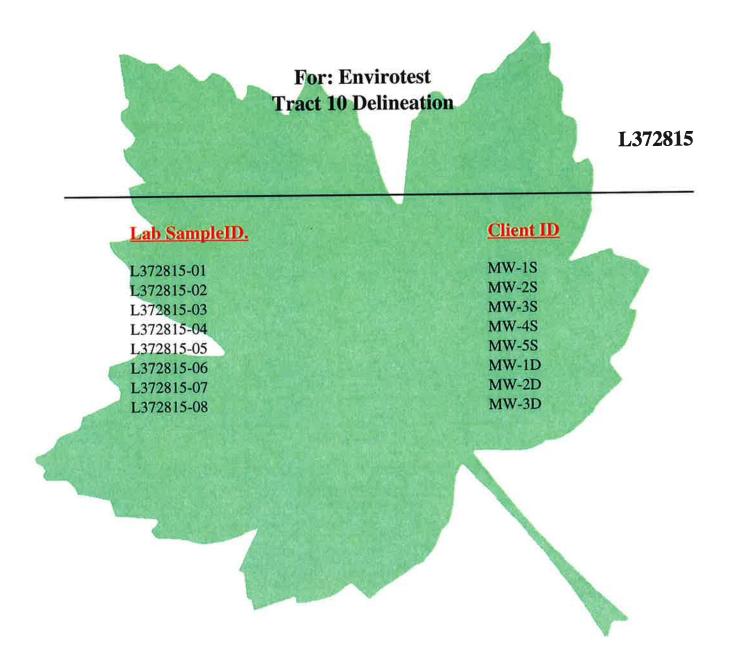
The following samples were analyzed in this batch:

0609302-01A

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- J K
- O Referenced analyte value is > 4 times amount spiked
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- P Dual Column results percent difference > 40%
- B Analyte detected in assoc. Method Blank
- U Analyzed for but not detected
- E Value above quantitation range QC Page: 31 of 31

Custom	Clistomor Information	~	e Lab Project Manager:	ē	e-Lab Project Manager	anayor			of the World	e-Lab Work Order #: ()(0(09)5())	009/201	
1.53		1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	í.	Project Information	tion			Parame	ter/Method	Parameter/Method Request for Analysis	Analysis	
Purohase Order		Proje	Project Name Ner-	North Velasco	9		A Voc	ற	62 6 08)			a Maria da Maria da Maria da Maria da Maria da Maria d
Work Order		Project	Project Number 9.2.0	せわりもののでも			B SVNC	(EPA	(2460)			
Company Name	TEARACON CONSULTANTS	4	Bill To Company 5 A	SAME AS			C RCRD	RCRA MALLIC (FPA		2010 J		
Send Report To		141441 14149					D H D H D H	15 105)				
Address	U U		Address									
City/State/Zip	Houshon, Ty 7	77043 CIIVIS	City/State/Zip		And a first of the second s			1 014/1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a contrar o de la companya en actual de la companya	en e Parte Para e a canada mana gan a ser anga a gang a gang den anga ang		
Phone	(713) 690- 8989		Phone						ere en sum Mañala da e e sérvire en mañar e reme			
Fax	(713) 690- 6787		Fax				1000 1000 1000 1000 1000 1000 1000 100		a de la constante e por en activitado e da se de activitado e de la constante de la constante de la constante e		••••••	
e-Mail Address	24LU	TERRACON, COM B-Mail Address	Address //				100 B					
	Sample Description	Company Cate	emit 👘	Mable	Pres.	# Bottles	A	C D		N. N. S. SOLAR	2001 - C 1 2001	Hold
	MW • 6	9/20/2006	1	HzO	HCL HN03	œ.	××	×	1012		1	
	MW - 5)	445	1420	->	0-	·					
and the second		arrow and the second										
							and the state					
0						- 100 / 10 - 10 - 1						
sambler(s) Please Print & Sign 765h M	Print&Sign Vosh Meffavlain	Shipmen	Shipment Method 9/20/06		Required Turnaround Time. (Check Box)	nd Time (C) V s Wk	teck Box)	e:(Check Box) SWE Dave 5 WE Dave 7 WE Dave 5	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Results Dire Date	Due Date:	
		「 「 こ 「 こ	×۱œ	AMBO	1)~2)6		Notes:					
Telinfuished by:	Dete:		Received by (La	boratory):		1.00	e-Lab Antifylical Cooler ID	I Trip Blank	-93 (m) (r	OC Package: (Check One Box Bolow):	ox Bolow)	
ogged by (Laboratory):	Date: No.		Checked by (Laboratory)	boretery):					9 9 9 9 5	Li Level II Std QC/Raw Data		U TRRP Checklist TRRP Level IV
				時間でで、日本市では、	いたい 日本 医門部門 長				🖂 🗌 🗆 Level IV	Level IV SW846/CLP		


2. Unless otherwise agreed in a formal contract, services provided by e-Lab Analytical, inc. are expressly limited to the ferms and conditions stated on the reverse.

e-Lab Analytical, Inc.

Sample Receipt Checklist

Client Name HBC TERRACON	Date/Time Received: <u>9/20/2006 5:45:00 PM</u>
Work Order Number 0609302	Received by: <u>RNG</u>
Checklist completed by <u>Signature</u> Signature	(b Reviewed by <u>Initials</u> <u>Althou</u>
Matrix: W Carrier name <u>Clien</u>	
Shipping container/cooler in good condition? Yes	No Not Present
Custody seals intact on shipping container/cooler? _ Yes	□ No □ Not Present ☑
Custody seals intact on sample bottles? Yes	No Not Present
Chain of custody present? Yes	☑ No □
Chain of custody signed when relinquished and received? Yes	
Chain of custody agrees with sample labels? Yes	☑ No □ ·
Samples in proper container/bottle? Yes	✓ No □
Sample containers intact? Yes	✓ No □
Sufficient sample volume for indicated test? Yes	
All samples received within holding time? Yes	✓ No □
Container/Temp Blank temperature in compliance? Yes	🗹 No 🗋
Temperature(s)/Thermometer(s): 2.5c	002
Water - VOA vials have zero headspace? Yes	No No VOA vials submitted
Water - pH acceptable upon receipt? Yes	
Adjusted?	Checked by
Login Notes: Trip blank not on COC; logged in without analysis.	
Client contacted Date contacted:	Person contacted
Contacted by: Regarding:	
Comments:	
Corrective Action	

Environmental Science Corporation Mount Juliet, TN

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Appendix A Laboratory Data Package Cover Page

This data package consists of:

- This signature page, the laboratory review checklist, and the following reportable data:
- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

William Mock Operations Manager Environmental Science Corp.

abo	orator	ry Name:Environmental Science	RC Date: 11/10/08					
_			aboratory Job Number:L372815-01, -02	, -03	, ar	nd -C)4	
	_		ep Batch Number(s): WG391737 V8260					
_			_	Yes	No	NA ³	NR ⁴	ER#
# ¹	A ²	Description						
		Chain-of-custody (C-O-C)	1	7				_
1	OI	Did samples meet the laboratory's standard conditions of sam	nple acceptability upon receipt?	×/		_	-	
		Were all departures from standard conditions described in an	exception report?	V				_
22	OI	Sample and quality control (QC) identification		-				_
		Are all field sample ID numbers cross-referenced to the labor	ratory ID numbers?	<u> </u>		_		
_		Are all laboratory ID numbers cross-referenced to the corresp	oonding QC data?		_		_	_
ช	OI	Test reports		-				_
		Were all samples prepared and analyzed within holding times	s?	1	_			_
		Other than those results < MQL, were all other raw values br	acketed by calibration standards?	1				
		Were calculations checked by a peer or supervisor?		1			_	_
		Were all analyte identifications checked by a peer or supervise		1	_			
		Were sample quantitation limits reported for all analytes not	detected?	1	_			_
		Were all results for soil and sediment samples reported on a c	dry weight basis?	1				
6		Were % moisture (or solids) reported for all soil and sedimer	nt samples?	1				
		If required for the project, TICs reported?						
₹4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		1			_	
		Were surrogate percent recoveries in all samples within the la	aboratory QC limits?	\checkmark				
Ł 5	OI	Test reports/summary forms for blank samples						L_
		Were appropriate type(s) of blanks analyzed?		1		_		⊢
		Were blanks analyzed at the appropriate frequency?						
		Were method blanks taken through the entire analytical proc	ess, including preparation and, if	/		nd -(
		applicable, cleanup procedures?		-	-		_	-
_		Were blank concentrations < MQL?		1		-		-
R 6	OI	Laboratory control samples (LCS):				-		-
		Were all COCs included in the LCS?				<u> </u>		
		Was each LCS taken through the entire analytical procedure,	, including prep and cleanup steps?			-	-	-
		Were LCSs analyzed at the required frequency?		1		-	-	-
		Were LCS (and LCSD, if applicable) %Rs within the laborat	tory QC limits?	_	1	-	-	1
		Does the detectability data document the laboratory's capabi	lity to detect the COCs at the MDL used	√				
		to calculate the SQLs?		Ľ	-		-	-
	-	Was the LCSD RPD within QC limits?		-	1		-	2
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) dat		-			-	+-
		Were the project/method specified analytes included in the M	AS and MSD?	V		<u> </u>		┢
		Were MS/MSD analyzed at the appropriate frequency?	0011 1.0	4			-	+-
		Were MS (and MSD, if applicable) %Rs within the laborator	ry QC limits?	1	_	-	-	⊢
		Were MS/MSD RPDs within laboratory QC limits?		1		-	-	┢
R8	OI	Analytical duplicate data		<u> </u>	-		-	┢
		Were appropriate analytical duplicates analyzed for each ma			-	V.	<u> </u>	┢
		Were analytical duplicates analyzed at the appropriate freque	ency?	-		1×	+	+-
	_	Were RPDs or relative standard deviations within the labora	tory QC limits?	-	<u> </u>	V.	-	+
R9	OI	Method quantitation limits (MQLs):	1.1	1	-	-	+	┢
	1	Are the MQLs for each method analyte included in the labor	ratory data package?	5	-	-	-	+
		Do the MQLs correspond to the concentration of the lowest	non-zero canoration standard?	J	-	-	-	+
	10-	Are unadjusted MQLs included in the laboratory data packa	get ·	×	-		-	+
R10	OI	Other problems/anomalies	in this LDC and ED?	J	-			+
		Are all known problems/anomalies/special conditions noted		_	-	-	-	+
		Were all necessary corrective actions performed for the repo	TOL minimum the motion interference	V	-		-	+
	1	Was applicable and available technology used to lower the S affects on the sample results?	SQL minimize the matrix interference		1			

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items id letter "S" should be retained and made available upon request for the appropriate retention period.
 e organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/10/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L372815
Reviewer Name: ESC Representative	Prep Batch Numbers: WG391737 V8260

Sample(s) MW-1S, MW-2S, MW-3S, MW-4S were analyzed for

ER#: Description

æ, *

- 1 The laboratory control sample or laboratory control sample duplicate recoveries were outside the laboratory control limits for Acrolein
- 2 The relative percent differences exceeded laboratory limits for 2-Chloroethyl vinyl ether and Acrolein

abc	orator	y Name:Environmental Science LRC	LRC Date: 11/10/08					
_	roject Name: Tract 10 Delineation Laboratory Job Number:L372815-06 and			07				
			Batch Number(s): WG391767 SV808					
# ¹				Yes No	NA ³	NR ⁴	ER#	
#	A	Description Chain-of-custody (C-O-C)						
		Chain-of-custody (C-O-C)	e accentability upon receint?	1	-			
1	OI	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? Were all departures from standard conditions described in an exception report?		·	1	-		
_							-	
2	01	Sample and quality control (QC) identification	ID numbers?	7	-	-		
		Are all field sample ID numbers cross-referenced to the laborate	ding OC data?	1			-	
		Are all laboratory ID numbers cross-referenced to the correspon		Y	-			
13	OI	Test reports		7	-		-	
		Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values brack	katad by calibration standards?	J	-		-	
			keled by calibration standards?	V	-	-		
		Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor	9	V	+	-	\vdash	
		Were all analyte identifications checked by a peer of supervisor	tected?	J	-	-		
		Were sample quantitation limits reported for all analytes not de Were all results for soil and sediment samples reported on a dry	weight hasis?	J			F	
		Were % moisture (or solids) reported for all soil and sediment s	amples?	V		1		
		If required for the project, TICs reported?	ampics:	-	1			
24	0				1*	<u> </u>	\vdash	
	0	Surrogate recovery data Were surrogates added prior to extraction?		1		-		
		Were surrogate stated prior to extraction? Were surrogate percent recoveries in all samples within the labor	oratory OC limits?	V				
R5	01	Test reports/summary forms for blank samples						
	01	Were appropriate type(s) of blanks analyzed?		1		1		
		Were blanks analyzed at the appropriate frequency?		1				
		Were method blanks taken through the entire analytical process	including preparation and, if		_	1	F	
		applicable, cleanup procedures?	, menuemig preparation and, in	√	_			
		Were blank concentrations < MQL?						
R6	01	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		\checkmark				
		Was each LCS taken through the entire analytical procedure, in	cluding prep and cleanup steps?	1				
		Were LCSs analyzed at the required frequency?		1				
		Were LCS (and LCSD, if applicable) %Rs within the laborator	y QC limits?	1			1	
		Does the detectability data document the laboratory's capabilit	y to detect the COCs at the MDL used	\checkmark				
		to calculate the SQLs?			_			
		Was the LCSD RPD within QC limits?		1	_			
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data			_	-		
		Were the project/method specified analytes included in the MS	and MSD?		1		1	
		Were MS/MSD analyzed at the appropriate frequency?		+	1	_	+	
		Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?	+	1	_	+	
		Were MS/MSD RPDs within laboratory QC limits?		+	1	-	-	
R8	OI	Analytical duplicate data				-	+	
		Were appropriate analytical duplicates analyzed for each matri	x?	┉	1	+	┢	
		Were analytical duplicates analyzed at the appropriate frequent	zy?	+	V	-	+	
		Were RPDs or relative standard deviations within the laborator	y QC limits?	+	V	-	╈	
R9	OI	Method quantitation limits (MQLs):	1		-	-	╋	
		Are the MQLs for each method analyte included in the laborate	bry data package?	1		-	+	
	1	Do the MQLs correspond to the concentration of the lowest no		1		-	┢	
		Are unadjusted MQLs included in the laboratory data package	<i>I</i>	V -		-	+	
R10	OI	Other problems/anomalies	this LDC and ED?	1		-	+	
		Are all known problems/anomalies/special conditions noted in	uns LAC and EA:	V		1	+	
		Were all necessary corrective actions performed for the reported	A uala?			1	+	
	1	Was applicable and available technology used to lower the SQ affects on the sample results?						

Items identified by the letter "R" must be included in the labor letter "S" should be retained and made available upon request for the appropriate retention period. = organic analyses; I = inorganic analyses (and general chemistry, when applicable); NA = Not applicable: 1.

2.

NA = Not applicable;
 NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5.

abo	orator	ry Name:Environmental Science	RC Date: 11/10/08				
_			aboratory Job Number:L372815-05, -02,	-01, -0	6, -03	B, and	d -04
			rep Batch Number(s): WG391779 HG				
# ¹		Description	· · · · · · · · · · · · · · · · · · ·	Yes No	NA ³	NR ⁴	ER#
π		Chain-of-custody (C-O-C)					
		Did samples meet the laboratory's standard conditions of sam	nnle accentability upon receint?	1	1		
1	OI	Were all departures from standard conditions described in an	exception report?		1	-	-
_						-	-
22	OI	Sample and quality control (QC) identification					-
		Are all field sample ID numbers cross-referenced to the labor	ratory ID numbers?	V V		+	-
		Are all laboratory ID numbers cross-referenced to the corresp	ponding QC data?	 ¥ -		+	-
U3	OI	Test reports	0	1		-	-
		Were all samples prepared and analyzed within holding time	s?		-		-
		Other than those results < MQL, were all other raw values br	racketed by calibration standards?	1	-	-	-
		Were calculations checked by a peer or supervisor?		1			-
	0 0	Were all analyte identifications checked by a peer or supervision	sor?	1	-		⊢
		Were sample quantitation limits reported for all analytes not	detected?	1	-	-	-
		Were all results for soil and sediment samples reported on a	dry weight basis?	V	+	-	-
		Were % moisture (or solids) reported for all soil and sediment	nt samples?	1			⊢
		If required for the project, TICs reported?				-	⊢
R4	0	Surrogate recovery data		+ +		-	⊢
		Were surrogates added prior to extraction?			1	-	\vdash
			ere surrogates added prior to extraction? ere surrogate percent recoveries in all samples within the laboratory QC limits?				
₹5	OI	Test reports/summary forms for blank samples			_	-	-
		Were appropriate type(s) of blanks analyzed?		V	_	-	⊢
		Were blanks analyzed at the appropriate frequency?		1	_	-	+
		Were method blanks taken through the entire analytical proc	ess, including preparation and, if				
		applicable, cleanup procedures?			-	-	+
		Were blank concentrations < MQL?		1	_	-	+-
R6	OI	Laboratory control samples (LCS):			_	-	-
		Were all COCs included in the LCS?		1	_	-	-
		Was each LCS taken through the entire analytical procedure	, including prep and cleanup steps?		_	-	-
		Were LCSs analyzed at the required frequency?		V	_	-	_
		Were LCS (and LCSD, if applicable) %Rs within the labora	tory QC limits?			_	-
		Does the detectability data document the laboratory's capability	ility to detect the COCs at the MDL used	1			
	I	to calculate the SQLs?		 '	_	_	+-
		Was the LCSD RPD within QC limits?			1	-	-
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) dat	ta		_	-	-
		Were the project/method specified analytes included in the M	MS and MSD?			-	+-
		Were MS/MSD analyzed at the appropriate frequency?		1	_	-	+-
		Were MS (and MSD, if applicable) %Rs within the laborato	ry QC limits?				+
		Were MS/MSD RPDs within laboratory QC limits?				-	+
R8	OI	Analytical duplicate data				-	+
		Were appropriate analytical duplicates analyzed for each ma	atrix?	1	_		+
		Were analytical duplicates analyzed at the appropriate frequ	ency?		_	+	+-
		Were RPDs or relative standard deviations within the laboration	atory QC limits?	1	_	-	+
R9	OI	Method quantitation limits (MQLs):			_	-	-
		Are the MQLs for each method analyte included in the labor	ratory data package?	V		-	-
	1	Do the MQLs correspond to the concentration of the lowest	non-zero calibration standard?	1		-	-
		Are unadjusted MQLs included in the laboratory data packa	nge?				-
R10	OI	Other problems/anomalies					+
		Are all known problems/anomalies/special conditions noted	in this LRC and ER?	1		-	+
		Were all necessary corrective actions performed for the repo	orted data?	1		_	-
		Was applicable and available technology used to lower the	SQL minimize the matrix interference	1			
	1	affects on the sample results? Items identified by the letter "R" must be included in the laboratory of		1 1			

Items identified by the letter "R" must be included in the laboratory data package submitted in the letter "S" should be retained and made available upon request for the appropriate retention period. Items identified by the letter "R" must be inclu Ι.

2. = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

5⁶ 9

NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

abo	rator	y Name: Environmental Science LRC I	Date: 11/10/08					
Project Name: Tract 10 Delineation Laboratory Job Number:L372815-08 and 07 Reviewer Name: ESC Representative Prep Batch Number(s): WG391780 HG							_	
			atch Number(s): WG391780 HG					
# ¹		Description		Yes	No	NA ³	NR ⁴	ER#
#	Chain-of-custody (C-O-C)							
	01	Ostalenen an and the second		1				
น	OI	Were all departures from standard conditions described in an exc	ention report?			1	0	
		-		_	-	•		-
22	01	Sample and quality control (QC) identification	ID such as 2	7	-			-
		Are an new sample in numbers cross-referenced to the laboratory in manoerer		× /	-		-	-
	_	Are all laboratory ID numbers cross-referenced to the correspond	ing QC data?	V	-	-	-	-
8	OI	Test reports		7	-	-	-	-
		Were all samples prepared and analyzed within holding times?	11 11 to the standard of		-	-		
		Other than those results < MQL, were all other raw values brack	ted by calibration standards?	1			-	-
		Were calculations checked by a peer or supervisor?		1	_	-		⊢
- ()		Were all analyte identifications checked by a peer or supervisor?	10	1	_	-	-	-
		Were sample quantitation limits reported for all analytes not deter	cted?	V,	_	-	-	-
		Were all results for soil and sediment samples reported on a dry	veight basis?	1		-		⊢
		Were % moisture (or solids) reported for all soil and sediment sa	mples?	~		-	-	-
		If required for the project, TICs reported?				1		⊢
R4	0	Surrogate recovery data				-		-
		Were surrogates added prior to extraction?			_	1	-	-
		Were surrogate percent recoveries in all samples within the labor	atory QC limits?		_	V	-	⊢
25	01	Test reports/summary forms for blank samples			-	-	<u> </u>	-
		Were appropriate type(s) of blanks analyzed?		V		-		+
		Were blanks analyzed at the appropriate frequency?		1		-		-
		Were method blanks taken through the entire analytical process,	including preparation and, if	\checkmark				
		applicable, cleanup procedures?				_		-
		Were blank concentrations < MQL?		1	_	-	<u> </u>	+
36	01	Laboratory control samples (LCS):						-
		Were all COCs included in the LCS?		1		-		+
		Was each LCS taken through the entire analytical procedure, inc	luding prep and cleanup steps?	V	_	-	-	-
		Were LCSs analyzed at the required frequency?		V		-	-	-
		Were LCS (and LCSD, if applicable) %Rs within the laboratory	QC limits?	1		-	-	1
		Does the detectability data document the laboratory's capability	to detect the COCs at the MDL used	\checkmark				
		to calculate the SQLs?		<u> </u>		-	-	-
		Was the LCSD RPD within QC limits?				1	_	-
X 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data		-		-	_	+-
		Were the project/method specified analytes included in the MS	ind MSD?	1		_		+-
	1	Were MS/MSD analyzed at the appropriate frequency?		V		_	_	+-
		Were MS (and MSD, if applicable) %Rs within the laboratory C	C limits?	1			_	+
		Were MS/MSD RPDs within laboratory QC limits?		1	_	-	-	-
R8	OI	Analytical duplicate data			-	-	+	+-
		Were appropriate analytical duplicates analyzed for each matrix	>	1				+
		Were analytical duplicates analyzed at the appropriate frequency	?	V	1	_	-	+
		Were RPDs or relative standard deviations within the laboratory	QC limits?	1	_	-	_	+
R9	OI	Method quantitation limits (MQLs):		-		_	_	-
		Are the MOLs for each method analyte included in the laborato	y data package?	V	_	-	-	
		Do the MQLs correspond to the concentration of the lowest nor	-zero calibration standard?	V	_	-	-	+
		Are unadjusted MQLs included in the laboratory data package?		\checkmark	_			+
R10	OI	Other problems/anomalies			-	_		
		Are all known problems/anomalies/special conditions noted in t	his LRC and ER?	V		_	_	+
		Were all necessary corrective actions performed for the reported	data?	1		_	-	_
	1	Was applicable and available technology used to lower the SQI	minimize the matrix interference	1				

Items identified by the letter "K" must be included in the laboratory data package submitted in the LRRP-required report(s). Items id letter "S" should be retained and made available upon request for the appropriate retention period.
 = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

		y Name:Environmental Science	C Date: 11/10/08			2	_	
	_		boratory Job Number:L372815-04, -05, -06,	-08, -0	1, -07,	-02, a	nd -0	
-	_		p Batch Number(s): WG391791 TPHTX	(
	_	Description		Yes N	o NA	3 NR ⁴	ER#	
#	A	Chain-of-custody (C-O-C)						
	01	Did samples meet the laboratory's standard conditions of sam	nle accentability upon receint?	1	-	-	+	
1	OI	Were all departures from standard conditions described in an	exception report?	-		-	+	
				_	∕	_	+	
2	OI	Sample and quality control (QC) identification		7		-	+	
		Are all field sample ID numbers cross-referenced to the labora	I laboratory ID numbers cross-referenced to the corresponding QC data?					
			onding QC data?		-	+	+	
13	OI	Test reports			-	-	+	
		Were all samples prepared and analyzed within holding times	?			-	+	
			icketed by calibration standards?		_	-	+	
		Were calculations checked by a peer or supervisor?	0	V V		-	+	
		Were all analyte identifications checked by a peer or supervise	OF /		-	-	+	
- 11		Were sample quantitation limits reported for all analytes not of	letected?	Y I		-	+	
- 11		Were all results for soil and sediment samples reported on a d		Ž	-	-	+	
		Were % moisture (or solids) reported for all soil and sediment	t samples?	V		-	+	
	-	If required for the project, TICs reported?			- *	+	+-	
R4	0	Surrogate recovery data		1		+	+-	
		Were surrogates added prior to extraction?	heretent OC limits?	1		+-	+	
-	01	Were surrogate percent recoveries in all samples within the la	V		-	+		
R5	OI	Test reports/summary forms for blank samples		1	-+-	-	+-	
		Were appropriate type(s) of blanks analyzed?				-	+	
		Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical proce	including propagation and if			+-	-	
		Were method blanks taken through the entire analytical proce	ss, including preparation and, it	√				
		applicable, cleanup procedures? Were blank concentrations < MQL?		1	-	+	+	
26	OI	Laboratory control samples (LCS):				1	+	
10	01	Were all COCs included in the LCS?		1		-	+	
		Was each LCS taken through the entire analytical procedure,	including prep and cleanup steps?	1			+	
		Were LCSs analyzed at the required frequency?	merading prep and creanily orper	J			T	
		Were LCSs analyzed at the required inequency: Were LCS (and LCSD, if applicable) %Rs within the laborate	ory OC limits?	1			\top	
		Does the detectability data document the laboratory's capabil	ity to detect the COCs at the MDL used				\uparrow	
		to calculate the SQLs?		√	_	_		
		Was the LCSD RPD within QC limits?		1				
27	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data	a					
		Were the project/method specified analytes included in the M	IS and MSD?					
		Were MS/MSD analyzed at the appropriate frequency?				/		
		Were MS (and MSD, if applicable) %Rs within the laborator	y QC limits?					
		Were MS/MSD RPDs within laboratory QC limits?						
R8	OI	Analytical duplicate data				_		
		Were appropriate analytical duplicates analyzed for each mat	rix?		v	_		
		Were analytical duplicates analyzed at the appropriate freque	ncy?			4		
		Were RPDs or relative standard deviations within the laborat	ory QC limits?		Y	1	_	
89	OI	Method quantitation limits (MQLs):			_	_	_	
		Are the MQLs for each method analyte included in the laborate	atory data package?	V	_	_	+	
		Do the MQLs correspond to the concentration of the lowest i	non-zero calibration standard?	1	_	_	_	
		Are unadjusted MQLs included in the laboratory data package	ge?			_	+	
R10	OI	Other problems/anomalies			_	_	+	
		Are all known problems/anomalies/special conditions noted		1	_	_	_	
		Were all necessary corrective actions performed for the report Was applicable and available technology used to lower the S	rted data?	1	_		+	
			OT the standard interferences			1	-	

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items id letter "S" should be retained and made available upon request for the appropriate retention period.
 e organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

60 (N

abo	rator	y Name: Environmental Science LRC	LRC Date: 11/10/08					
_	_		ratory Job Number:L372815-01, -02,	-03,	-04	, -05,	, and	I -01
	0.60%		Batch Number(s): WG391829 SV808					-
		200100000		Yes	No	NA ³	NR ⁴	FR#
# ¹	A ²	Description		103	140	14/1		LIN
		Chain-of-custody (C-O-C)					-	
1	OI	Did samples meet the laboratory's standard conditions of sample	e acceptability upon receipt?	✓	-	_	-	_
	1	Were all departures from standard conditions described in an ex	ception report?	V				_
12	OI	Sample and quality control (QC) identification						_
		Are all field sample ID numbers cross-referenced to the laborate	Id sample ID numbers cross-referenced to the laboratory ID numbers? ✓ poratory ID numbers cross-referenced to the corresponding QC data? ✓ rts ✓ amples prepared and analyzed within holding times? ✓ n those results < MQL, were all other raw values bracketed by calibration standards?					
	53	Are all laboratory ID numbers cross-referenced to the correspon	ding QC data?	\checkmark				
13	OI	Test reports						_
	1	Were all samples prepared and analyzed within holding times?						_
		Other than those results < MQL, were all other raw values brack	ceted by calibration standards?	1				-
		Were calculations checked by a peer or supervisor?		1	_			_
		Were all analyte identifications checked by a peer or supervisor						
		Were sample quantitation limits reported for all analytes not de	tected?	1				
		Were all results for soil and sediment samples reported on a dry	weight basis?	-	_			_
		Were % moisture (or solids) reported for all soil and sediment s	amples?	1	_			
		If required for the project, TICs reported?				1		
٤4	0	Surrogate recovery data						_
		Were surrogates added prior to extraction?		\checkmark				
		Were surrogate percent recoveries in all samples within the labor	pratory QC limits?		1			1
15	OI	Test reports/summary forms for blank samples				-		
		Were appropriate type(s) of blanks analyzed?		1				
		Were blanks analyzed at the appropriate frequency?		1				
		Were method blanks taken through the entire analytical process	, including preparation and, if	1				
		applicable, cleanup procedures?		Y	_			
		Were blank concentrations < MQL?		1				_
26	OI	Laboratory control samples (LCS):						_
		Were all COCs included in the LCS?		1		_		
		Was each LCS taken through the entire analytical procedure, in	cluding prep and cleanup steps?			_		
		Were LCSs analyzed at the required frequency?						_
		Were LCS (and LCSD, if applicable) %Rs within the laborator	y QC limits?	\checkmark				
		Does the detectability data document the laboratory's capability	y to detect the COCs at the MDL used					
		to calculate the SQLs?				-		
_		Was the LCSD RPD within QC limits?		1		-		L
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data			_	-		⊢
		Were the project/method specified analytes included in the MS	and MSD?			V	-	-
		Were MS/MSD analyzed at the appropriate frequency?		<u> </u>	_	1V	-	⊢
	1	Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?			V.	-	⊢
		Were MS/MSD RPDs within laboratory QC limits?		-	_	1	-	⊢
R8	OI	Analytical duplicate data		-	_	17	-	⊢
		Were appropriate analytical duplicates analyzed for each matrix		-		V	-	┢─
		Were analytical duplicates analyzed at the appropriate frequence	2011 H 0		_	V		-
_		Were RPDs or relative standard deviations within the laborator	y QC limits?		<u> </u>	┥┹		┢
R9	OI	Method quantitation limits (MQLs):		1	<u> </u>	-		⊢
		Are the MQLs for each method analyte included in the laborate	bry data package?	1	-	-	-	⊢
		Do the MQLs correspond to the concentration of the lowest no	n-zero calibration standard?	1	_	-		+
	L	Are unadjusted MQLs included in the laboratory data package	(1	-			+
R10	OI	Other problems/anomalies	dist DO and PD0	17	-	-	-	┢
		Are all known problems/anomalies/special conditions noted in		1				⊢
		Were all necessary corrective actions performed for the reported	d data /	1	-		-	+
	1	Was applicable and available technology used to lower the SQ affects on the sample results?	L minimize the matrix interference		1			

Items identified by the letter "R" must be included in the laboratory data package submitted in the T letter "S" should be retained and made available upon request for the appropriate retention period.
 e organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Excention Period identification purchase for Executive Density identification.

4. 5.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/10/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L372815
Reviewer Name: ESC Representative	Prep Batch Numbers: WG391829 SV8082

Sample(s) MW-1S, MW-2S, MW-3S, MW-4S, MW-5S, MW-3D were

ER#: Description

1 The surrogate recoveries were outside the laboratory control limits for L372815-03. The surrogate recoveries for the remaining samples were within method limits.

abo	orator	y Name:Environmental Science LRC	Date: 11/10/08				
			oratory Job Number:L372815-01, -02, -03,	-04, -05	, -06, -	07, and	1-0
_			Batch Number(s): WG391831 SV8270				-
-		Nume: EGO Heprocontativo		Yes No		NR ⁴ E	
# ¹	A ²	Description		100 110			
		Chain-of-custody (C-O-C)	1.117	7			_
11	OI	Did samples meet the laboratory's standard conditions of samples	le acceptability upon receipt?	×	+		-
		Were all departures from standard conditions described in an ex	cception report?		1		_
22	OI	Sample and quality control (QC) identification		-	_		_
		Are all field sample ID numbers cross-referenced to the laborate	ory ID numbers?	V			_
		Are all laboratory ID numbers cross-referenced to the correspon	nding QC data?		-		_
เง	01	Test reports			-		_
		Were all samples prepared and analyzed within holding times?	110	1	-		-
		Other than those results < MQL, were all other raw values brac	keted by calibration standards?	1	-		-
		Were calculations checked by a peer or supervisor?		V	-		_
		Were all analyte identifications checked by a peer or supervisor		<u> </u>			_
		Were sample quantitation limits reported for all analytes not de	tected?	<u> </u>			_
		Were all results for soil and sediment samples reported on a dry	weight basis?	V	-	+	_
		Were % moisture (or solids) reported for all soil and sediment s	samples?	1			_
		If required for the project, TICs reported?			1		_
R4	0	Surrogate recovery data		-	_		_
		Were surrogates added prior to extraction?		×	_	+	_
_		Were surrogate percent recoveries in all samples within the lab	-	_		-	
15	OI	Test reports/summary forms for blank samples				-	-
		Were appropriate type(s) of blanks analyzed?		1			-
		Were blanks analyzed at the appropriate frequency?					_
		Were method blanks taken through the entire analytical process	s, including preparation and, if				
		applicable, cleanup procedures?			-	+	-
_		Were blank concentrations < MQL?		v			-
R 6	OI	Laboratory control samples (LCS):		1	-		h
		Were all COCs included in the LCS?	a la diagonatic and alaonum stans?	J		+-+	t
		Was each LCS taken through the entire analytical procedure, in	icluding prep and cleanup steps?	1		+	-
		Were LCSs analyzed at the required frequency?	OC limite?	V			-
		Were LCS (and LCSD, if applicable) %Rs within the laborator	y UC limits?			-	-
	1	Does the detectability data document the laboratory's capabilit	y to detect the COCs at the MDL used	√		1	
	1	to calculate the SQLs?		1	-	+	-
		Was the LCSD RPD within QC limits?					1
27	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS	and MSD?		1		1
		Were MS/MSD analyzed at the appropriate frequency?			V		È
		Were MS (and MSD, if applicable) %Rs within the laboratory	OC limits?		J		
		Were MS/MSD RPDs within laboratory QC limits?	QC minus.		J		T
R8	01	Analytical duplicate data					í.
NO		Were appropriate analytical duplicates analyzed for each matri	x?		1		
		Were analytical duplicates analyzed at the appropriate frequen			J		Γ
		Were RPDs or relative standard deviations within the laborato	ry OC limits?		J		Γ
89	OI	Method quantitation limits (MQLs):					
		Are the MQLs for each method analyte included in the laborat	ory data package?	\checkmark			
	1	Do the MQLs correspond to the concentration of the lowest no	on-zero calibration standard?	V			Ē
		Are unadjusted MQLs included in the laboratory data package	?	1			Ĺ
R10	10	Other problems/anomalies					Ĺ
0		Are all known problems/anomalies/special conditions noted in	this LRC and ER?	$\overline{\mathbf{V}}$			Ĺ
		Were all necessary corrective actions performed for the report	ed data?	\mathbf{I}			Ĺ
		Was applicable and available technology used to lower the SQ	L minimize the matrix interference	1			ſ
	1	affects on the sample results? Items identified by the letter "R" must be included in the laboratory dat		· ·			L

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items idletter "S" should be retained and made available upon request for the appropriate retention period.
 = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

 \mathbb{F}_{p}

abo	rator	y Name: Environmental Science LRC	C Date: 11/10/08					
_			ooratory Job Number:L372815-05, -07	, and	1-0	8		
			p Batch Number(s): WG391933 V8260					
-				Yes N	No	NA ³	NR ⁴	ER#
# ¹	A ²	Description						
		Chain-of-custody (C-O-C)	1 to the little summer reasonate?	7				-
1	OI	Did samples meet the laboratory's standard conditions of samp	ble acceptability upon receipt?	1	-	-	-	-
		Were all departures from standard conditions described in an e	exception report?	V	_			
2	OI	Sample and quality control (QC) identification					_	
		Are all field sample ID numbers cross-referenced to the labora	d sample ID numbers cross-referenced to the laboratory ID numbers? ✓ bratory ID numbers cross-referenced to the corresponding QC data? ✓ trs ✓ umples prepared and analyzed within holding times? ✓ those results < MQL, were all other raw values bracketed by calibration standards?					
		Are all laboratory ID numbers cross-referenced to the correspon	onding QC data?	1	-	-		
13	OI	Test reports		-	-			-
		Were all samples prepared and analyzed within holding times?	?		-		_	
		Other than those results < MQL, were all other raw values bra	cketed by calibration standards?	_				_
	()	Were calculations checked by a peer or supervisor?		_				
		Were all analyte identifications checked by a peer or supervise	or?	1	_			_
		Were sample quantitation limits reported for all analytes not d	letected?	1	_		-	_
		Were all results for soil and sediment samples reported on a di	ry weight basis?	_				_
		Were % moisture (or solids) reported for all soil and sediment	samples?	1	_	L .		
		If required for the project, TICs reported?			_	1		
24	0	Surrogate recovery data						
	-	Were surrogates added prior to extraction?		1				
		Were surrogate percent recoveries in all samples within the lal	boratory QC limits?	1				
25	OI	Test reports/summary forms for blank samples						
		Were appropriate type(s) of blanks analyzed?		\checkmark				
		Were blanks analyzed at the appropriate frequency?		\checkmark				
		Were method blanks taken through the entire analytical proce	ss, including preparation and, if	1				
		applicable, cleanup procedures?						
		Were blank concentrations < MQL?		\checkmark				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		\checkmark				
		Was each LCS taken through the entire analytical procedure,	including prep and cleanup steps?	\checkmark				
		Were LCSs analyzed at the required frequency?		1				
		Were LCS (and LCSD, if applicable) %Rs within the laborate	ory QC limits?	1				
		Does the detectability data document the laboratory's capability	ity to detect the COCs at the MDL used	1				
	1	to calculate the SQLs?		V				
		Was the LCSD RPD within QC limits?		1			1	
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data	1					
		Were the project/method specified analytes included in the M	IS and MSD?	\checkmark				
		Were MS/MSD analyzed at the appropriate frequency?		\checkmark				
		Were MS (and MSD, if applicable) %Rs within the laborator	y OC limits?		1	1		1
		Were MS/MSD RPDs within laboratory QC limits?			1			2
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each mat	rix?			\checkmark		
		Were analytical duplicates analyzed at the appropriate freque	ncv?			1		
		Were RPDs or relative standard deviations within the laborat	ory OC limits?			1		
R9	OI	Method quantitation limits (MQLs):						
	101	Are the MQLs for each method analyte included in the labora	atory data package?	1				
	1	Do the MQLs correspond to the concentration of the lowest r	non-zero calibration standard?	1			1	
	1	Are unadjusted MQLs included in the laboratory data packag	ge?	1				T
R10	01	Other problems/anomalies			1		1	T
1110		Are all known problems/anomalies/special conditions noted in	in this LRC and ER?	1				T
		Were all necessary corrective actions performed for the report	rted data?	V				Τ
		Was applicable and available technology used to lower the S	OL minimize the matrix interference	_				Τ
	1	affects on the sample results?	x		1			

Items identified by the letter "R" must be included in the laborato items identified by the letter "K" must be included in the laboratory data package submitted in the letter "S" should be retained and made available upon request for the appropriate retention period. 1.

= organic analyses; I = inorganic analyses (and general chemistry, when applicable); 2.

NA = Not applicable;
 NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5.

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/10/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L372815
Reviewer Name: ESC Representative	Prep Batch Numbers: WG391933 V8260

Sample(s) MW-5S, MW-2D, MW-3D were analyzed for Volatile

ER#: Description

1 The matrix spike or matrix spike duplicate recoveries were below the laboratory control limits for 1,2-Dichloropropane.

2 The relative percent differences exceeded laboratory limits for 1,2-Dichloropropane and 2-Chloroethyl vinyl ether

abo	orator	ry Name:Environmental Science LRC D	ate: 11/10/08					
Project Name: Tract 10 Delineation Laboratory Job Number:L3728			elineation Laboratory Job Number:L372815-04, -06, -)2, an	1d -0
	Reviewer Name: ESC Representative Prep Batch Number(s): WG391996 SBG							
				Yes 1	No	NA ³	NR ⁴	ER#
#'	A*	Description			35			
		Chain-of-custody (C-O-C)	the iliter on reasont?	7	-		-	
R1	OI	Did samples meet the laboratory's standard conditions of sample	acceptability upon receipt?	×/	_	-		
	1	Were all departures from standard conditions described in an exce	phon report:	v	_	_		
R2	OI	Sample and quality control (QC) identification		1			-	
		Are all field sample ID numbers cross-referenced to the laborator	/ ID numbers?	~	_			
		Are all laboratory ID numbers cross-referenced to the correspond	ng QC data?	\checkmark	_			
R3	OI	Test reports		7			_	-
		Were all samples prepared and analyzed within holding times?	11	-	_			-
		Other than those results < MQL, were all other raw values bracke	ted by calibration standards?	1	-		_	-
		Were calculations checked by a peer or supervisor?		1	-	_		<u> </u>
		Were all analyte identifications checked by a peer or supervisor?	10	<u> </u>	_		-	-
		Were sample quantitation limits reported for all analytes not deter	sted?	×,				-
		Were all results for soil and sediment samples reported on a dry v	eight basis?	1	_		_	
		Were % moisture (or solids) reported for all soil and sediment sar	nples?	~		-		-
		If required for the project, TICs reported?			_	1	-	-
R4	0	Surrogate recovery data				-		-
		Were surrogates added prior to extraction?			_	V		-
		Were surrogate percent recoveries in all samples within the laborate	atory QC limits?		_	~	_	-
R5	OI	Test reports/summary forms for blank samples				<u> </u>	_	-
		Were appropriate type(s) of blanks analyzed?		1		-		-
		Were blanks analyzed at the appropriate frequency?		1	_			-
		Were method blanks taken through the entire analytical process,	ncluding preparation and, if	\checkmark				
		applicable, cleanup procedures?						-
		Were blank concentrations < MQL?		1			_	-
R6	01	Laboratory control samples (LCS):		1		-		-
		Were all COCs included in the LCS?		1	_	-	-	-
	1	Was each LCS taken through the entire analytical procedure, incl	uding prep and cleanup steps?	V	_		_	⊢
		Were LCSs analyzed at the required frequency?		1	_	-	-	⊢
		Were LCS (and LCSD, if applicable) %Rs within the laboratory	QC limits?	1		_	-	┢
		Does the detectability data document the laboratory's capability t	o detect the COCs at the MDL used					
		to calculate the SQLs?		-	_	-		⊢
		Was the LCSD RPD within QC limits?				1	-	┢
R 7	01	Matrix spike (MS) and matrix spike duplicate (MSD) data		- /		-	-	┝
		Were the project/method specified analytes included in the MS a	nd MSD?	1	_		-	+-
		Were MS/MSD analyzed at the appropriate frequency?		1				⊢
		Were MS (and MSD, if applicable) %Rs within the laboratory Q	C limits?	1			-	⊢
		Were MS/MSD RPDs within laboratory QC limits?		\checkmark			-	⊢
R8	OI	Analytical duplicate data		1		-	-	┢
		Were appropriate analytical duplicates analyzed for each matrix?	A	1	-		-	┢
		Were analytical duplicates analyzed at the appropriate frequency	2	\checkmark	1			Ł
	-	Were RPDs or relative standard deviations within the laboratory	QC limits?		V	-	-	⊬
R9	OI	Method quantitation limits (MQLs):		-	-	-	-	┢
		Are the MQLs for each method analyte included in the laborator	y data package?	4	-	-	-	┝
		Do the MQLs correspond to the concentration of the lowest non-	zero calibration standard?	V		-	-	+-
		Are unadjusted MQLs included in the laboratory data package?		V		+		╋
R10	01	Other problems/anomalies		-		-		+
		Are all known problems/anomalies/special conditions noted in the	its LRC and ER?	1			-	+
		Were all necessary corrective actions performed for the reported	data?	1	-	-	-	+
	1	Was applicable and available technology used to lower the SQL	minimize the matrix interference	\checkmark		1		

Items identified by the letter "K" must be included in the laboratory data package submitted in the TRRP-required report(s). Items ideletter "S" should be retained and made available upon request for the appropriate retention period.
 e organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/10/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L372815
Reviewer Name: ESC Representative	Prep Batch Numbers: WG391996 SBG

Sample(s) MW-4S, MW-1D, MW-1S, MW-5S, MW-2D, MW-3S,

ER#: Description

1 The relative percent differences exceeded laboratory limits for Antimony

abo	orator	y Name:Environmental Science	Date: 11/10/08					
_			oratory Job Number:L372815-06					
-			p Batch Number(s): WG392107 V8260	_			_	
				Yes 1	No.	NA	NR ⁴	ER#
# ¹	A*	Description		105 1				
		Chain-of-custody (C-O-C)	1.10	7	-	_		_
11	OI	Did samples meet the laboratory's standard conditions of samp	ble acceptability upon receipt?		-	-		-
		Were all departures from standard conditions described in an e	exception report?	\checkmark	_	_		
22	OI	Sample and quality control (QC) identification		-	_	_	_	
		Are all field sample ID numbers cross-referenced to the labora		V	_	_		_
		Are all laboratory ID numbers cross-referenced to the correspon	onding QC data?	\checkmark		_		_
3	OI	Test reports		-	-	_	-	-
		Were all samples prepared and analyzed within holding times?		1	_	_		-
		Other than those results < MQL, were all other raw values brack	cketed by calibration standards?	1	_		-	-
- 8		Were calculations checked by a peer or supervisor?		1				-
		Were all analyte identifications checked by a peer or supervisor	DF?	4	_			_
		Were sample quantitation limits reported for all analytes not d	etected?	4			-	-
		Were all results for soil and sediment samples reported on a dr	y weight basis?	4				-
		Were % moisture (or solids) reported for all soil and sediment	samples?	1		- 1		-
		If required for the project, TICs reported?		-		1		-
R4	0	Surrogate recovery data		1		_		-
		Were surrogates added prior to extraction?	OC limite?	4	_	_		
_		Were surrogate percent recoveries in all samples within the lab	boratory QC limits?	\checkmark			-	\vdash
25	OI	Test reports/summary forms for blank samples		-		_	-	
		Were appropriate type(s) of blanks analyzed?		1	_	_		\vdash
		Were blanks analyzed at the appropriate frequency?	in the line reconception and if			_		-
		Were method blanks taken through the entire analytical process	ss, including preparation and, if	√				
		applicable, cleanup procedures?		7	-			-
0.6		Were blank concentrations < MQL?		-	-		_	
R6	OI	Laboratory control samples (LCS): Were all COCs included in the LCS?		1	-			
		Was each LCS taken through the entire analytical procedure, i	including prep and cleanup steps?	1				
		Were LCSs analyzed at the required frequency?	morudning prop and creating suppor	V				
		Were LCSs analyzed at the required nequency? Were LCS (and LCSD, if applicable) %Rs within the laborato	rv OC limits?	J				
		Does the detectability data document the laboratory's capabili	ty to detect the COCs at the MDL used	1				T
		to calculate the SQLs?		✔		<u> </u>		
		Was the LCSD RPD within QC limits?						
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data						
		Were the project/method specified analytes included in the M	S and MSD?	1				
		Were MS/MSD analyzed at the appropriate frequency?		1				
		Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?		1			1
		Were MS/MSD RPDs within laboratory QC limits?					_	
R8	OI	Analytical duplicate data				-		-
		Were appropriate analytical duplicates analyzed for each matri			_	1	-	┢
	1	Were analytical duplicates analyzed at the appropriate frequen	ncy?	_		V	<u> </u>	+-
		Were RPDs or relative standard deviations within the laborate	ory QC limits?		-	V	-	╋
R9	OI	Method quantitation limits (MQLs):		-	_	-	-	┢
	1	Are the MQLs for each method analyte included in the labora	tory data package?	4	-	-	-	+
		Do the MQLs correspond to the concentration of the lowest n	on-zero calibration standard?	1	_	-	-	┢
		Are unadjusted MQLs included in the laboratory data packag	e?	V		-	-	┢
R10	OI	Other problems/anomalies	(1) IDO 1 ED9	17		-	-	+
	1	Are all known problems/anomalies/special conditions noted i	n this LKU and EK?	1	-	-	-	╋
		Were all necessary corrective actions performed for the report		1	-	-	-	┢
	11	Was applicable and available technology used to lower the So	JL minimize the matrix interference		1	1	1	1

letter "S" should be retained and made available upon request for the appropriate retention period. = organic analyses; I = inorganic analyses (and general chemistry, when applicable); " must be inclu 1.

2. NA = Not applicable;
 NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5.

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/10/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L372815
Reviewer Name: ESC Representative	Prep Batch Numbers: WG392107 V8260

Sample(s) MW-1D were analyzed for Volatile Organic Compounds by

ER#: Description

1 The matrix spike or matrix spike duplicate recoveries were below the laboratory control limits for cis-1,2-Dichloroethene.

abo	orator	y Name:Environmental Science	RC Date: 11/11/08					
_		ame: Tract 10 Delineation	aboratory Job Number:L372815-01, -02, -06	, -07, -	08, -	04, -0)5, and	d -03
-	_		rep Batch Number(s): WG392192 AGICF					
_				Yes 1	No	NA ³	NR ⁴	ER#
# ¹	A ⁴	Description		100				
		Chain-of-custody (C-O-C)		1	-			-
21	OI	Did samples meet the laboratory's standard conditions of sam	mple acceptability upon receipt?	1	-			
		Were all departures from standard conditions described in an	n exception report?	1	_			
22	01	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the labo	oratory ID numbers?	1				
		Are all laboratory ID numbers cross-referenced to the corres	sponding QC data?	1				
23	OI	Test reports			_			
		Were all samples prepared and analyzed within holding time	es?	1	_			_
	i i	Other than those results < MQL, were all other raw values b	racketed by calibration standards?	1				_
		Were calculations checked by a peer or supervisor?		1				
		Were all analyte identifications checked by a peer or superv	isor?	1				
		Were sample quantitation limits reported for all analytes not	t detected?	\checkmark				
		Were all results for soil and sediment samples reported on a	dry weight basis?	\checkmark				
		Were % moisture (or solids) reported for all soil and sedime	ent samples?	1				
		If required for the project, TICs reported?				\checkmark		
R4	0	Surrogate recovery data						
-	1 <u> </u>	Were surrogates added prior to extraction?				1		
		Were surrogate percent recoveries in all samples within the	laboratory QC limits?			1		
R5	OI	Test reports/summary forms for blank samples			[]			
		Were appropriate type(s) of blanks analyzed?		1				
		Were blanks analyzed at the appropriate frequency?		V				
		Were method blanks taken through the entire analytical pro-	cess including preparation and, if					
		applicable, cleanup procedures?	eess, meruaning preparation and,	√				
		Were blank concentrations < MQL?		1	11			
R6	OI	Laboratory control samples (LCS):						
NU		Were all COCs included in the LCS?		V				
		Was each LCS taken through the entire analytical procedure	e, including prep and cleanup steps?	1				
		Were LCSs analyzed at the required frequency?		V				
		Were LCS (and LCSD, if applicable) %Rs within the labora	atory OC limits?	1				
		Does the detectability data document the laboratory's capab	pility to detect the COCs at the MDL used					
		to calculate the SQLs?				l		
		Was the LCSD RPD within QC limits?				1		1
R 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) da	ata					
		Were the project/method specified analytes included in the	MS and MSD?	1				
	1	Were MS/MSD analyzed at the appropriate frequency?		1				
		Were MS (and MSD, if applicable) %Rs within the laborate	ory OC limits?		1			1
		Were MS/MSD RPDs within laboratory QC limits?		1				
R8	OI	Analytical duplicate data						
110		Were appropriate analytical duplicates analyzed for each m	atrix?	1				
		Were analytical duplicates analyzed at the appropriate frequencies	uency?	V				
		Were RPDs or relative standard deviations within the labor	ratory OC limits?	V				
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the labo	oratory data package?	1				
		Do the MQLs correspond to the concentration of the lowes	st non-zero calibration standard?	1				
		Are unadjusted MQLs included in the laboratory data pack	age?	1				
R10	OI	Other problems/anomalies						Γ
1/10		Are all known problems/anomalies/special conditions noted	d in this LRC and ER?	V				Γ
		Were all necessary corrective actions performed for the rep	ported data?	V				T
		Was applicable and available technology used to lower the	SOL minimize the matrix interference	-	1			Г
		affects on the sample results?	DAT WHENTER WE WHENT WEATER AND	$ \checkmark $	1			

Items identified by the letter "R" must be included in the laboratory data package submitted in the I letter "S" should be retained and made available upon request for the appropriate retention period. = organic analyses; I = inorganic analyses (and general chemistry, when applicable); 1.

2. NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Rep

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/11/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L372815
Reviewer Name: ESC Representative	Prep Batch Numbers: WG392192 AGICP

Sample(s) MW-1S, MW-2S, MW-1D, MW-2D, MW-3D, MW-4S,

ER#: Description

1 The matrix spike or matrix spike duplicate recoveries were below the laboratory control limits for Silver.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Matt Monroe Envirotest 3902 Braxton St.

Houston, TX 77063

Report Summary

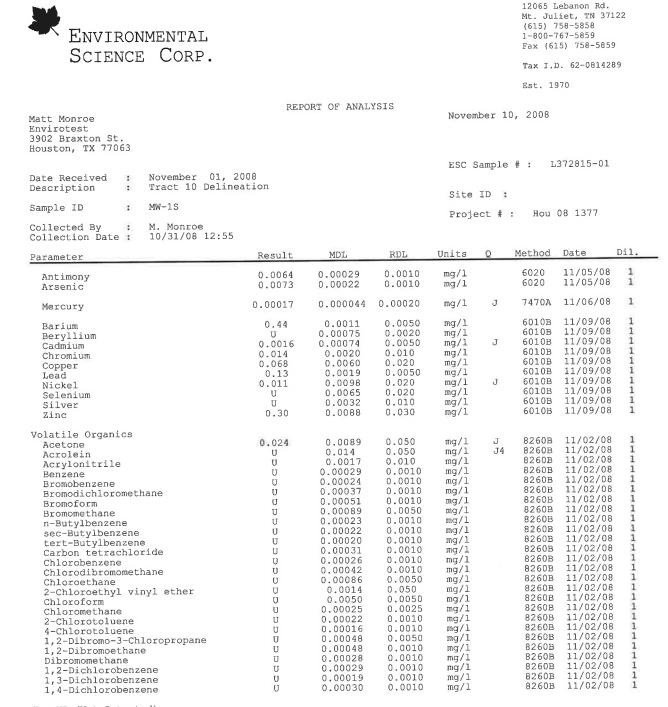
Monday November 10, 2008

Report Number: L372815 Samples Received: 11/01/08 Client Project: Hou 08 1377

Description: Tract 10 Delineation

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use information supplied questions regarding this data package, please do not neglitate to call.

Entire Report Reviewed By:


Laboratory Certification Numbers

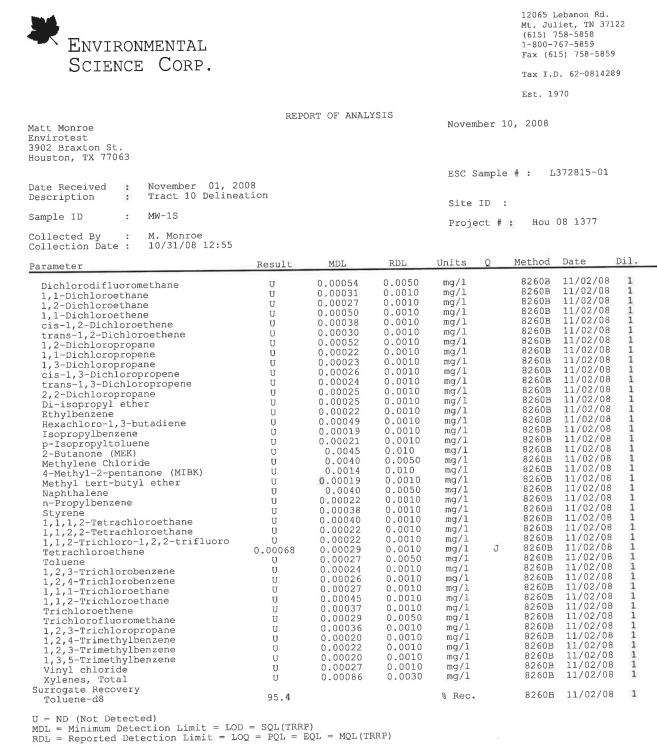
A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375, DW21704, ND - R-140 NJ - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Mark W. Beasley,

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

8 Samples Reported: 11/10/08 14:04 Printed: 11/10/08 14:04 Page 1 of 35 ESC Representative

U = ND (Not Detected)


MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL (TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 2 of 35

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 3 of 35

ENVIRONMENTAL SCIENCE CORP.

Matt Monroe Envirotest

Date Received

Description

Collected By

Sample ID

Parameter

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 10, 2008

3902 Braxton St. Houston, TX 77063 ESC Sample # : L372815-01 November 01, 2008 Tract 10 Delineation • • Site ID : MW-1S . Project # : Hou 08 1377 M. Monroe 10/31/08 12:55 : Collection Date : Method Date Dil. RDL Units 0 MDL Result % Rec. 8260B 11/02/08 1 99.8 Dibromofluoromethane % Rec. 8260B 11/02/08 1 4-Bromofluorobenzene 101. TNRCC Method 1005 - TPH TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35 0.98 0.98 0.98 mg/l mg/l mg/l TX 1005 11/05/08 1 5.0 U TX 1005 11/05/08 TX 1005 11/05/08 TX 1005 11/05/08 TX 1005 11/05/08 5.0 1 U 1 Π 1 1.6 5.0 mg/l Ū Surrogate Recovery o-Terphenyl TX 1005 11/05/08 1 % Rec. 107. Polynuclear Aromatic Hydrocarbons 8270C-S 11/05/08 1.14 гŤ 0 000028 0.000057 $m\alpha/1$

Anthracene	U	0.000028	0.000057	mg/1			11/05/00	1 1 4
Acenaphthene	0.000064	0.000028	0.000057	mg/l			11/05/08	1.14
Acenaphthylene	U	0.000028	0.000057	mg/l			11/05/08	1.14
Benzo (a) anthracene	Ū	0.000028	0.000057	mg/l			11/05/08	1.14
Benzo (a) pyrene	0.000034	0.000028	0.000057	mg/l	J	8270C-S	11/05/08	1.14
Benzo(b) fluoranthene	U	0.000028	0.000057	mg/l		8270C-S	11/05/08	1.14
	Ŭ	0.000028	0.000057	mg/l		8270C-S	11/05/08	1.14
Benzo (g, h, i) perylene	U	0.000028	0.000057	mg/l		8270C-S	11/05/08	1.14
Benzo(k)fluoranthene	Ŭ	0.000028	0.000057	mq/l		8270C-S	11/05/08	1.14
Chrysene	U	0.000028	0.000057	mg/l		8270C-S	11/05/08	1.14
Dibenz(a, h) anthracene	U	0.000028	0.000057	mg/l			11/05/08	1.14
Fluoranthene	0.000082	0.000028	0.000057	mg/l			11/05/08	1.14
Fluorene	U.UUUU82 U	0.000028	0.000057	mg/1			11/05/08	1.14
Indeno (1, 2, 3-cd) pyrene	U	0.00014	0.00029	mg/l			11/05/08	1.14
Naphthalene		0.000028	0.000057	mg/l			11/05/08	1.14
Phenanthrene	0.00011		0.000057	mg/l			11/05/08	1.14
Pyrene	U	0.000028					11/05/08	1.14
1-Methylnaphthalene	U	0.00014	0.00029	mg/l			11/05/08	1.14
2-Methylnaphthalene	U	0.00014	0.00029	mg/l		02700 5	11/03/00	T . T I
Surrogate Recovery				0.0.0		02700-0	11/05/08	1.14
Nitrobenzene-d5	73.7			% Rec.			11/05/08	1.14
2-Fluorobiphenyl	75.7			% Rec.				
p-Terphenyl-d14	80.2			% Rec.		82700-5	11/05/08	1.14
Polychlorinated Biphenyls								
PCB 1016	U	0.000085	0.00055	mg/l		8082	11/04/08	1.1
PCB 1010 PCB 1221	Ŭ	0.00018	0.00055	mg/l		8082	11/04/08	1.1
	U	0.00019	0.00055	mg/l		8082	11/04/08	1.1
PCB 1232	Ŭ	0.00011	0.00055	mg/l		8082	11/04/08	1.1
PCB 1242	U	0.000043	0.00055	mg/l		8082	11/04/08	1.1
PCB 1248	U	0.00013	0.00055	mg/l		8082	11/04/08	1.1
PCB 1254	U	0.00017	0.00055	mg/l		8082	11/04/08	1.1
PCB 1260	0	0.00017	0.00000	····3/ T				

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 4 of 35

	-	mental Corp.					Mt. Ju (615) 1-800- Fax (6	Lebanon Rd. liet, TN 37 758-5858 767-5859 15) 758-585 D. 62-08142	9
							Est. 1	970	
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 7706			REPO	RT OF ANAI	LYSIS	November 1	.0, 2008		
						ESC Sample	e#: I	372815-01	
Date Received Description		November 01, 2 Tract 10 Deline	008 ation			Site ID :	1		
Sample ID	:	MW-1S				Project #	: Hou	08 1377	
Collected By Collection Date		M. Monroe 10/31/08 12:55				200 4 /2001.00			
Parameter			Result	MDL	RDL	Units Q	Method	Date	Dil.
PCBs Surrogates Decachlorobiph Tetrachloro-m-			50.0 35.0			% Rec. % Rec.	8082 8082	11/04/08 11/04/08	

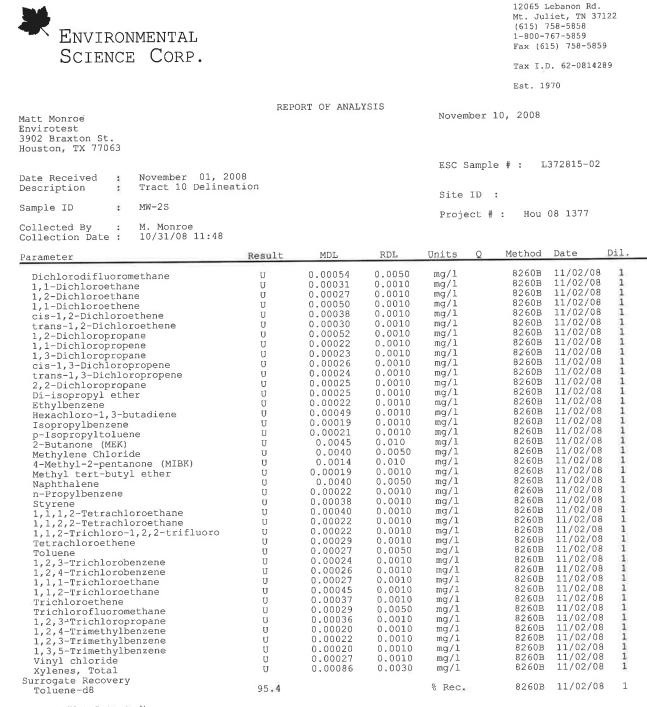
U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

5.0

Page 5 of 35

Environmental						Mt. Jul (615) 7 1-800-7	ebanon Rd. iet, TN 37 58-5858 67-5859 5) 758-585	122
SCIENCE CORP.						Tax I.I	0. 62-08142	89
						Est. 19	970	
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063	REPC	ORT OF ANAL	YSIS	Novem	ber 10	, 2008		
Date Received : November 01, 20 Description : Tract 10 Delinea					ample	#: L	372815-02	
Sample ID : MW-2S				Site	ID :			
Collected By : M. Monroe				Proje	ect #	Hou	08 1377	
Collection Date : 10/31/08 11:48								
Parameter	Result	MDL	RDL	Units	Q	Method	Date	Dil.
Antimony Arsenic	0.0028 0.015	0.00029 0.00022	0.0010 0.0010	mg/l mg/l		6020 6020	11/05/08 11/05/08	
Mercury	0.000060	0.000044	0.00020	mg/l	J	7470A	11/06/08	: 1
Barium Beryllium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc	0.24 U 0.0010 0.0025 0.013 0.033 U U U 0.12	$\begin{array}{c} 0.0011 \\ 0.00075 \\ 0.00074 \\ 0.0020 \\ 0.0060 \\ 0.0019 \\ 0.0098 \\ 0.0065 \\ 0.0032 \\ 0.0088 \end{array}$	0.0050 0.0020 0.0050 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.030	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J J	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	11/08/08 11/08/08 11/08/08 11/08/08 11/08/08	1 1
Volatile Organics Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	α α α α α α α α α α α α α α α α α α α	0.0089 0.014 0.0017 0.00029 0.00037 0.00051 0.00023 0.00022 0.00022 0.00020 0.00020 0.00031 0.00026 0.00042 0.00042 0.00042 0.00042 0.00025 0.00025 0.00025 0.00022 0.00022 0.00025 0.00025 0.00025 0.00025 0.00048 0.00029	0.050 0.050 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0050 0.0050 0.0050 0.0050 0.0050 0.0010 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J4J3 J3	8260B 8260B 8260B 8260B 8260B	11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01 11/02/01	$ \begin{array}{c} 3 \\ 1 \\ $


÷. *

ŕ

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 6 of 35

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP)

RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 7 of 35

Environmental Science Corp.

Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5058 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 10, 2008

Date Received : November 01, 20 Description : Tract 10 Delines				ESC Sampl	e#: L3	72815-02	
200011P 100				Site ID	•		
Sample ID : MW-2S				Project #	: Hou C	8 1377	
Collected By : M. Monroe Collection Date : 10/31/08 11:48							
Parameter	Result	MDL	RDL	Units Q	Method	Date	Dil.
Dibromofluoromethane 4-Bromofluorobenzene	99.7 99.5			% Rec. % Rec.	8260B 8260B	11/02/08 11/02/08	1
TNRCC Method 1005 - TPH TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35 Surrogate Recovery o-Terphenyl	U U U U 111.	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l mg/l % Rec.	TX 1005 TX 1005 TX 1005	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	1 1 1 1
Polynuclear Aromatic Hydrocarbons Anthracene Acenaphthene Acenaphthylene Benzo(a)anthracene Benzo(a)fluoranthene Benzo(b)fluoranthene Benzo(y, h, i)perylene Benzo(y, fluoranthene Chrysene Dibenz(a, h)anthracene Fluoranthene Fluorene Indeno(1, 2, 3-cd)pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene 2-Methylnaphthalene Surrogate Recovery Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	U U U U U U U U U U U U U U U U U U U	0.000025 0.00012	0.000050 0.00025 0.00025	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	
Polychlorinated Biphenyls PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	บ บ บ บ บ บ	0.000085 0.00018 0.00019 0.00011 0.000043 0.00013 0.00017	0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055	mg/l mg/l mg/l mg/l mg/l mg/l	8082 8082 8082 8082 8082 8082 8082 8082	11/07/08 11/07/08 11/07/08 11/07/08 11/07/08 11/07/08 11/07/08	1.1 1.1 1.1 1.1 1.1 1.1 1.1

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 8 of 35

1 Martin 19 (1) 10. 10. 10. 10.		MENTAL CORP.					Mt. Ju (615) 1-800- Fax (6	Lebanon Rd. Liet, TN 37 758-5858 767-5859 15) 758-585 D. 62-08142	122 9
Matt Monroe			REPO	RT OF ANAI	YSIS	November 1			
Envirotest 3902 Braxton St. Houston, TX 7706				÷					
						ESC Sample	# : I	372815-02	
Date Received	11102	November 01, 20 Tract 10 Delinea							
Description			reion			Site ID :			
Sample ID		MW-2S				Project #	: Hou	08 1377	
Collected By Collection Date	:	M. Monroe 10/31/08 11:48							
			Result	MDL	RDL	Units Q	Method	Date	Dil.

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

0

÷

Page 9 of 35

ENVIRONMENTAL SCIENCE CORP. REPORT OF ANALYSIS November 10, 2008 3902 Braxton St Houston, TX 77063 ESC Sample # : L372815-03 November 01, 2008 . Tract 10 Delineation . Site ID : : MW-3S Project # : Hou 08 1377 - 23 M. Monroe 10/31/08 12:15

Method Date Dil. MDL RDL. Units 0 Result Parameter 11/05/08 6020 1 0.0049 0.00029 0.0010 mg/l Antimony 6020 11/05/08 1 0.015 0.00022 0.0010 mq/1Arsenic 0.000044 0.00020 mg/l 7470A 11/06/08 1 0.00029 Mercury 6010B 11/08/08 0.0011 0.0050 mg/l 1 0.64 Barium 11/08/08 6010B 1 mg/l mg/l J 0.0011 0.00075 0.0020 Beryllium Cadmium 0.0050 11/08/08 0.00074 ιT 6010B 1 0.0050 6010B 11/08/08 1 0.0020 mg/l 0.063 Chromium 11/08/08 11/08/08 0.0060 0.020 mg/l 6010B 1 0.12 Copper 6010B 1 0.33 0.0019 0.0050 mg/l Lead 11/08/08 6010B 1 0.036 0.0098 0.020 mg/1 Nickel 11/08/08 6010B 1 TΤ 0.0065 0.020 mg/l mg/l Selenium 0.0050 6010B 11/08/08 1 J Silver 1 6010B 11/08/08 0.45 0.0088 0.030 mg/l Zinc Volatile Organics 11/02/08 $0.050 \\ 0.050 \\ 0.010$ 0.0089 0.014 0.0017 8260B mq/1U Acetone 11/02/08 J4J3 8260B 1 mq/l П Acrolein mg/l 8260B 1 U Acrylonitrile 11/02/08 11/02/08 11/02/08 1 0.00029 0.0010 mg/l 8260B U Benzene 8260B 1 Ū 0.00024 0.0010 mg/l Bromobenzene 0.0010 8260B 11/02/08 mg/l 1 0.00037 Bromodichloromethane U 11/02/08 11/02/08 8260B 1 mg/l Bromoform U 0.00089 0.0050 mg/l 8260B 1 Bromomethane IJ 11/02/08 8260B 1 Ū 0.00023 0.0010 mg/l n-Butylbenzene 8260B 1 U 0.00022 0.0010 mg/l sec-Butylbenzene 8260B 11/02/08 $0.0010 \\ 0.0010$ 1 mg/l U 0.00020 tert-Butylbenzene 8260B 11/02/08 1 0.00031 mg/l Carbon tetrachloride U 11/02/08 0.00026 8260B 0.0010 mg/l Chlorobenzene U 11/02/08 0.00042 0.0010 mg/l 8260B U Chlorodibromomethane 8260B 11/02/08 1 U 0.00086 0.0050 mg/l Chloroethane mg/l J3 8260B 11/02/08 1 0.050 0.0014 2-Chloroethyl vinyl ether U U mg/l 8260B 11/02/08 1 Chloroform 0.00025 0.0025 mg/l 8260B 11/02/08 Ū Chloromethane 8260B 11/02/08 1 U 0.00022 0.0010 mg/l 2-Chlorotoluene 8260B 11/02/08 U 0.00016 0.0010 mg/l 4-Chlorotoluene 8260B 11/02/08 0.00048 0.0050 mg/l 1 1,2-Dibromo-3-Chloropropane τī mg/l 0.00048 0.0010 8260B 11/02/08 1 2-Dibromoethane U 11/02/08 Ū 0.00028 0.0010 mg/l 8260B 1 Dibromomethane 8260B 11/02/08 U 0.00029 0.0010 mg/l 1,2-Dichlorobenzene 8260B 11/02/08 ma/11,3-Dichlorobenzene U 0.00019 0.0010 0.0010 mg/l 8260B 11/02/08 1 1,4-Dichlorobenzene 0.00030 IJ

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP)

RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL (TRRP)

Note:

8 <u>- 5</u>

Matt Monroe Envirotest

Date Received

Description

Collected By

Collection Date :

Sample ID

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 10 of 35

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858

Tax T.D. 62-0814289

1-800-767-5859 Fax (615) 758-5859

Est. 1970

29 of 107

Science C	JUKE.					Fax (615) 758	0000
						Tax I.D. 62-0	814289
						Est. 1970	
		REP	ORT OF ANALY	ISIS			
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063					November		
Date Received : Nov Description : Tra	ember 01, 200 ct 10 Delineat)8 ion			ESC Sampl		-03
Sample ID : MW-	3S				Site ID Project #		7
	Monroe 31/08 12:15				110,000		
Parameter		Result	MDL	RDL	Units Q	Method Date	Dil
Dichlorodifluorometha 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethen 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane cis-1,3-Dichloropropane Di-isopropyl ether Ethylbenzene Hexachloro-1,3-butadi Isopropylbenzene p-Isopropyltoluene 2-Butanone (MEK) Methylene Chloride 4-Methyl-2-pentanone Methyl tert-butyl eth Naphthalene n-Propylbenzene Styrene 1,1,2-Tetrachloroet 1,1,2-Tetrachloroet 1,1,2-Trichloroethane 1,2,3-Trichloroethane Trichloroethene Trichloroethene Trichloroethane 1,2,3-Trichloropropar 1,2,4-Trimethylbenzer 1,2,3-Trimethylbenzer 1,3,5-Trimethylbenzer	e ene ne ppene ene (MIBK) ter thane thane thane thane thane thane trifluoro	ממהמממממממממממממממממממממממממממממ	0.00054 0.00031 0.00027 0.00050 0.00038 0.00032 0.00022 0.00022 0.00022 0.00025 0.00025 0.00025 0.00025 0.00025 0.00022 0.00049 0.00049 0.00049 0.00040 0.0019 0.00040 0.0019 0.00040 0.00040 0.00040 0.00040 0.00040 0.00040 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00027 0.00027 0.00027 0.00026 0.00027 0.00027 0.00026 0.00027 0.00027 0.00027 0.00026 0.00027 0.00027 0.00027 0.00027 0.00020 0.00020 0.00020 0.00027 0.00020 0.00027 0.00020 0.00020 0.00027 0.00020 0.00020 0.00020 0.00020 0.00027	0.0050 0.0010 0.00	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	8260B 11/02 82	2/08 1 2/08 1 <td< td=""></td<>

ji.

 $\sim 10^{-1}$

MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 11 of 35

ENVIRONMENTAL SCIENCE CORP.

Matt Monroe

Envirotest 3902 Braxton St. Houston, TX 77063

ъ^се

.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 10, 2008

Rouscon, IX //005				ESC Sa	ample	# : L372815-03
Date Received : November 01, 20 Description : Tract 10 Delinea					-	
Sample ID : MW-3S				Site 1		
				Projec	ct #	: Hou 08 1377
Collected By : M. Monroe Collection Date : 10/31/08 12:15						
Parameter	Result	MDL	RDL	Units	Q	Method Date Dil.
Dibromofluoromethane 4-Bromofluorobenzene	100. 99.8			% Rec. % Rec.		8260B 11/02/08 1 8260B 11/02/08 1
TNRCC Method 1005 - TPH TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35 Surrogate Recovery o-Terphenyl	U U U U 108.	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l mg/l % Rec.		TX 1005 11/05/08 1
Polynuclear Aromatic Hydrocarbons Anthracene Acenaphthene Acenaphthylene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene 2-Methylnaphthalene Surrogate Recovery Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	0.00014 0.0039 0.00011 0.000055 U U U U 0.00060 0.00070 U U 0.00012 0.00035 U U 73.1 78.0 85.2	$\begin{array}{c} 0.000038\\ 0.0000038\\ 0.0000038\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.0$	$\begin{array}{c} 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000077\\ 0.000039\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.00$	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J	8270C-S 11/05/08 1.54 8270C-S 11/05/08 1.54
Polychlorinated Biphenyls PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1260	U U U U U U	0.00019 0.00041 0.00044 0.00025 0.000098 0.00030 0.00039	0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013	mg/l mg/l mg/l mg/l mg/l mg/l		808211/04/082.5808211/04/082.5808211/04/082.5808211/04/082.5808211/04/082.5808211/04/082.5808211/04/082.5808211/04/082.5

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

Page 12 of 35

		imentai Corf									Mt. Ju (615) 1-800- Fax (6	Lebanon Rd. liet, TN 37 758-5858 767-5859 15) 758-585 D. 62-08142 970	9
Matt Monroe Envirotest 3902 Braxton St Houston, TX 770					REPORT	OF A	NALYSI	S	Nover	ber 1	0, 2008		
			213 03201						ESC S	ample	#: 1	372815-03	
Date Received Description	:	November Tract 10							Cito	TD .			
Sample ID		MW-3S								ID :			
Sampre 15									Proje	ect #	: Hou	08 1377	
Collected By Collection Date		M. Monroe 10/31/08											
				Resul	t	MDL		RDL	Units	0	Method	Date	Dil.

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:04

 $r_{\rm g} \stackrel{\rm M}{=}$

Page 13 of 35

Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 ENVIRONMENTAL Fax (615) 758-5859 SCIENCE CORP. Tax T.D. 62-0814289 Est. 1970 REPORT OF ANALYSIS November 10, 2008 Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063 ESC Sample # : L372815-04 November 01, 2008 Date Received . Tract 10 Delineation Description . Site ID : Sample ID MW-4S : Project # : Hou 08 1377 Collected By M. Monroe 10/31/08 13:40 Collection Date : Dil. RDT. Units Q Method Date MDT. Result Parameter 6020 11/05/08 0.00029 0.0010 1 0.0018 mg/l Antimony 6020 11/05/08 1 0.00022 0.0010 mg/l 0.012 Arsenic 7470A 11/06/08 1 0.000044 0.00020 mg/l 0.000090 Mercury 11/08/08 1.2 0.0011 0.0050 6010B 1 mg/l Barium 11/08/08 6010B 0.0021 0.00075 0.0020 mg/l Beryllium 11/08/08 Л 6010B 0.0045 0.00074 0.0050 mg/l Cadmium 6010B 11/08/08 mg/l 1 0.010 0.057 0.0020 Chromium 0.0060 0.020 mg/l 6010B 11/08/08 1 0.027 Copper 11/08/08 11/08/08 0.0019 0.0050 mg/l 6010B 1 Lead 1 0.0098 0.020 mg/l 6010B 0.033 Nickel 6010B 11/08/08 1 Ū. 0.0065 0.020 mg/l Selenium mg/l 11/08/08 J 6010B 1 0.0042 0.010 0.0032 Silver 6010B 11/08/08 1 0.0088 0.030 mg/l Zinc 0.20 Volatile Organics 8260B 11/02/08 0.0089 0.050 mg/l Ŭ Acetone mg/l 11/02/08 J4J3 8260B 1 ŤΤ 0.014 0.050 Acrolein 8260B 11/02/08 1 0.0017 0.010 mg/l U Acrylonitrile 11/02/08 mg/l 0.0010 8260B 1 0.00029 U Benzene 0.00024 0.0010 mg/l 8260B 1 Ū Bromobenzene 8260B 11/02/08 U 0.00037 0.0010 mg/l Bromodichloromethane 8260B 11/02/08 1 mg/l U 0.00051 0.0010 Bromoform 0.00089 0.0050 mg/l 8260B 11/02/08 1 U Bromomethane 11/02/08 11/02/08 0.0010 mg/l 8260B 1 0.00023 U n-Butylbenzene mg/l 8260B 0.00022 0.0010 U sec-Butylbenzene 8260B 11/02/08 $0.0010 \\ 0.0010$ Ū 0.00020 mg/l tert-Butylbenzene 8260B 11/02/08 $m\sigma/1$ Carbon tetrachloride U 0.00031 8260B 11/02/08 0.00026 0.0010 mg/l Chlorobenzene U 11/02/08 11/02/08 0.00042 0.0010 8260B 1 Ū mg/l Chlorodibromomethane 8260B 1 0.00086 0.0050 mg/l U Chloroethane 8260B 11/02/08 J3 0.0014 0.050 2-Chloroethyl vinyl ether U mg/l mg/l 8260B 11/02/08 1 U Chloroform 0.00025 0.0025 8260B 11/02/08 1 mg/l U Chloromethane 11/02/08 mg/l 0.0010 8260B 1 U 2-Chlorotoluene 8260B 11/02/08 Ū 0.00016 0.0010 mg/l 4-Chlorotoluene 8260B 11/02/08 0.0050 mg/l 1 1.2-Dibromo-3-Chloropropane U 0.00048 mg/l 8260B 11/02/08 1 0.0010 U 0.00048 1,2-Dibromoethane 0.00028 0.0010 mg/l 8260B 8260B 11/02/08 1 Dibromomethane U 11/02/08 0.00029 0.0010 mg/l 1 U 1,2-Dichlorobenzene 8260B 11/02/08 1 U 0.00019 0.0010 mg/l

1,3-Dichlorobenzene 1,4-Dichlorobenzene

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

0.00030

σ

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 14 of 35

8260B

11/02/08

1

mg/l

0.0010

12065 Lebanon Rd.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

November 10, 2008

nouscony in , , ,							ampl	e#: L	372815-04	
Date Received Description	:	November 01, 20 Tract 10 Delines							572015 01	
Sample ID		MW-45				Site	1D	:		
Sample ID	•	MM-45				Proje	ect #	: Hou	08 1377	
Collected By Collection Date	:	M. Monroe 10/31/08 13:40								
Parameter			Result	MDL	RDL	Units	Q	Method	Date	Dil.
Dichlorodiflu 1,1-Dichloroe 1,2-Dichloroe 1,1-Dichloroe cis-1,2-Dichl trans-1,2-Dic 1,2-Dichlorop 1,3-Dichlorop 1,3-Dichlorop	than than the the oroe hlo ropa	ne ne sthene roethene ane ene	U U U U U U U U U U	0.00054 0.00031 0.00027 0.00050 0.00038 0.00030 0.00052 0.00022 0.00023	$\begin{array}{c} 0.0050\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ \end{array}$	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l		8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/02/08 11/02/08 11/02/08 11/02/08 11/02/08 11/02/08 11/02/08 11/02/08	1 1 1 1 1 1
cis-1,3-Dichl			Ŭ	0.00026	0.0010	mg/l		8260B	11/02/08	1

T, I-DICHIOIOPIOPene	0			12	8260B	11/02/08	1
1,3-Dichloropropane	U	0.00023	0.0010	mg/l		11/02/08	î
cis-1,3-Dichloropropene	U	0.00026	0.0010	mg/l	8260B		i
trans-1,3-Dichloropropene	U	0.00024	0.0010	mg/l	8260B	11/02/08	1
2,2-Dichloropropane	U	0.00025	0.0010	mg/l	8260B	11/02/08	÷
Di-isopropyl ether	U	0.00025	0.0010	mg/l	8260B	11/02/08	1
Ethylbenzene	U	0.00022	0.0010	mg/l	8260B	11/02/08	
Hexachloro-1,3-butadiene	U	0.00049	0.0010	mg/l	8260B	11/02/08	4
Isopropylbenzene	υ	0.00019	0.0010	mg/l	8260B	11/02/08	1
p-Isopropyltoluene	U	0.00021	0.0010	mg/l	8260B	11/02/08	1
2-Butanone (MEK)	U	0.0045	0.010	mg/l	8260B	11/02/08	1
Methylene Chloride	U	0.0040	0.0050	mg/l	8260B	11/02/08	1
4-Methyl-2-pentanone (MIBK)	U	0.0014	0.010	mg/l	8260B	11/02/08	1
Methyl tert-butyl ether	U	0.00019	0.0010	mg/l	8260B	11/02/08	1
Naphthalene	U	0.0040	0.0050	mg/l	8260B	11/02/08	-
n-Propylbenzene	U	0.00022	0.0010	mg/l	8260B	11/02/08	1
Styrene	U	0.00038	0.0010	mg/l	8260B	11/02/08	+
1,1,1,2-Tetrachloroethane	U	0.00040	0.0010	mg/l	8260B	11/02/08	1
1,1,2,2-Tetrachloroethane	U	0.00022	0.0010	mg/l	8260B	11/02/08	1
1,1,2-Trichloro-1,2,2-trifluoro	U	0.00022	0.0010	mg/l	8260B	11/02/08	1
Tetrachloroethene	U	0.00029	0.0010	mg/l	8260B	11/02/08	1
Toluene	U	0.00027	0.0050	mg/l	8260B	11/02/08	1
1,2,3-Trichlorobenzene	U	0.00024	0.0010	mg/l	8260B	11/02/08	1
1,2,4-Trichlorobenzene	U	0.00026	0.0010	mg/l	8260B	11/02/08	1
1,1,1-Trichloroethane	U	0.00027	0.0010	mg/l	8260B	11/02/08	1
1,1,2-Trichloroethane	U	0.00045	0.0010	mg/l	8260B	11/02/08	1
Trichloroethene	U	0.00037	0.0010	mg/l	8260B	11/02/08	1
Trichlorofluoromethane	U	0.00029	0.0050	mg/l	8260B	11/02/08	1
1.2.3-Trichloropropane	U	0.00036	0.0010	mg/l	8260B	11/02/08	1
1,2,4-Trimethylbenzene	U	0.00020	0.0010	mg/l	8260B	11/02/08	1
1,2,3-Trimethylbenzene	U	0.00022	0.0010	mg/l	8260B	11/02/08	1
1,3,5-Trimethylbenzene	U	0.00020	0.0010	mg/l	8260B	11/02/08	1
Vinyl chloride	U	0.00027	0.0010	mg/l	8260B	11/02/08	1
Xylenes, Total	U	0.00086	0.0030	mg/l	8260B	11/02/08	1
Surrogate Recovery							2
Toluene-d8	95.7			% Rec.	8260B	11/02/08	1

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 15 of 35

Environmental Science Corp.

-

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063		REPO	RT OF ANALY	YSIS	Novemb	ber 1	0, 2008		
Date Received :	November 01, 20	0.8			ESC Sa	ample	#: L3	872815-04	
Date Received : Description :	Tract 10 Delinea				Site]	ID :			
Sample ID :	MW-4S				Projec	et #	: Hou (8 1377	
Collected By : Collection Date :	M. Monroe 10/31/08 13:40								
Parameter		Result	MDL	RDL	Units	Q	Method	Date	Dil.
Dibromofluorometh 4-Bromofluorobenz		100. 101.			% Rec. % Rec.		8260B 8260B	11/02/08 11/02/08	1 1
TNRCC Method 1005 - TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35	• ТЪН	บ บ บ บ	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l mg/l		TX 1005 TX 1005	11/05/08 11/05/08 11/05/08 11/05/08	1 1 1
Surrogate Recovery o-Terphenyl		106.			% Rec.		TX 1005	11/05/08	1
Polynuclear Aromati Anthracene Acenaphthene Benzo (a) anthracer Benzo (a) pyrene Benzo (b) fluoranth Benzo (g, h, i) peryl Benzo (g,	ne Lene Lene acene byrene ene	U 0.000058 U U 0.000038 U U U U 0.000032 0.000043 U U 0.000087 U U U U U U U U	$\begin{array}{c} 0.000031\\ 0.000016\\ 0.0000000\\ 0.000000\\ 0.000000\\ 0.00000\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.$	$\begin{array}{c} 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.000063\\ 0.00031\\ 0.000063\\ 0.00031\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0$	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J J J	8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	$\begin{array}{c} 1.25\\$
Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14		64.3 71.8 84.2			응 Rec. 응 Rec. 응 Rec.		8270C-S	11/05/08 11/05/08 11/05/08	1.25
Polychlorinated Bij PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1260	phenyls	ប ប ប ប ប ប	0.00015 0.00033 0.00035 0.00020 0.000078 0.00024 0.00031	$\begin{array}{c} 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.0010\\ \end{array}$	mg/l mg/l mg/l mg/l mg/l mg/l		8082 8082 8082 8082 8082 8082 8082 8082	11/04/08 11/04/08 11/04/08 11/04/08 11/04/08 11/04/08	2 2 2 2 2 3 2 3 2 3 2 3 2

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 16 of 35

					Tax	I.D. 62-0814	359 1289
					Est.	. 1970	
	REPORT	OF ANAL	'SIS	November	10, 200	18	20
				ESC Sam	ole # :	L372815-0	4
1, 2008 lineation				Site ID			
						ou 08 1377	
:40							
Rest	ult	MDL	RDL	Units Q	Metho	od Date	Dil.
	:40 Rest	1, 2008 lineation	1, 2008 lineation ::40 Result MDL	ineation :40 Result MDL RDL	November ESC Samp lineation Site ID Project ::40 Result MDL RDL Units Q	November 10, 200 ESC Sample # : 1, 2008 lineation Site ID : Project # : Ho ::40 Result MDL RDL Units Q Metho	November 10, 2008 ESC Sample # : L372815-0 Site ID : Project # : Hou 08 1377 ::40 Result MDL RDL Units Q Method Date

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

÷

× * 22

Page 17 of 35

Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

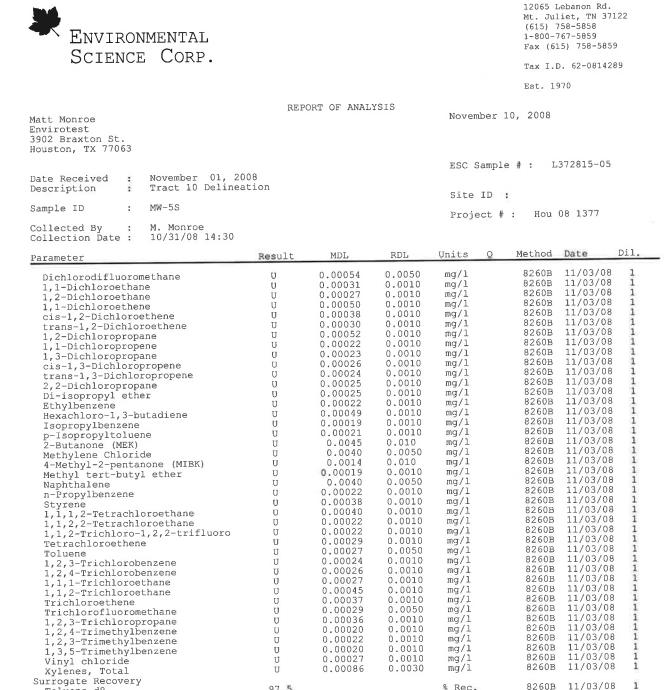
REPORT OF ANALYSIS

November 10, 2008

Date Received : November 01, 2	008			ESC S	Sample	e#: L	372815-05	
Description : Tract 10 Deline				Site	ID :			
Sample ID : MW-5S				Proje	ect #	: Hou	08 1377	
Collected By : M. Monroe Collection Date : 10/31/08 14:30				110)(
Parameter	Result	MDL	RDL	Units	Q	Method	Date	Dil.
Antimony Arsenic	0.0015 0.0026	0.00029	0.0010 0.0010	mg/l mg/l		6020 6020	11/05/08 11/05/08	1
Mercury	0.000050	0.000044	0.00020	mg/l	J	7470A	11/06/08	1
Barium Beryllium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc	0.34 U U 0.0099 U 0.0055 0.022	$\begin{array}{c} 0.0011 \\ 0.00075 \\ 0.00074 \\ 0.0020 \\ 0.0060 \\ 0.0019 \\ 0.0098 \\ 0.0065 \\ 0.0032 \\ 0.0088 \end{array}$	0.0050 0.0020 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.030	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J J	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	11/08/08 11/08/08 11/08/08 11/08/08 11/08/08 11/08/08 11/08/08 11/08/08 11/08/08 11/08/08	111111111
Volatile Organics Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoofarm Bromomethane n-Butylbenzene sec-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethyl vinyl ether Chloroform Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ממממממממממממממממממממ	0.0089 0.014 0.0017 0.00029 0.00024 0.00051 0.00023 0.00023 0.00022 0.00020 0.00020 0.00026 0.00042 0.00042 0.00042 0.00042 0.00042 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00048 0.00029 0.00029 0.00029	0.050 0.050 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0050 0.0050 0.0050 0.0050 0.0050 0.0010 0.0000	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>		8260B 8260B	11/03/08 11/03/08	

U = ND (Not Detected)

22


MDL = Mointenne Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 18 of 35

Toluene-d8

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

97.5

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 19 of 35

% Rec.

ENVIRONMENTAL SCIENCE CORP.

 $\tau_{\rm s}$ *

i

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

						Est. 19	970	
Matt Monroe Envirotest 3902 Braxton St.	REPO	ORT OF ANAL	YSIS	Novemb	ber 1	0, 2008		
Houston, TX 77063 Date Received : November 01, 21				ESC Sa	ample	• # : L	372815-05	
Description : Tract 10 Delines	ation			Site I	[D :			
Sample ID : MW-5S				Projec	ct #	: Hou	08 1377	
Collected By : M. Monroe Collection Date : 10/31/08 14:30								
Parameter	Result	MDL	RDL	Units	Q	Method	Date	Dil.
Dibromofluoromethane 4-Bromofluorobenzene	94.3 97.1			% Rec. % Rec.		8260B 8260B	11/03/08 11/03/08	
TNRCC Method 1005 - TPH TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35	ប ប ប ប	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l mg/l		TX 1005 TX 1005	11/05/08 11/05/08 11/05/08 11/05/08	1 1
Surrogate Recovery o-Terphenyl	108.			% Rec.		TX 1005	11/05/08	1
Polynuclear Aromatic Hydrocarbons Anthracene Acenaphthene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a, h) anthracene Fluoranthene Fluorene Indeno (1, 2, 3-cd) pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene	0.000088 0.00029 U 0.000074 0.000042 0.000042 U 0.000048 U 0.00029 0.00025 0.00025 0.00034 0.00047 0.00032 0.00016 U U	0.000028 0.0000028 0.00000000000000000000000000000000000	$\begin{array}{c} 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.000057\\ 0.00029$	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J J J	8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	
Surrogate Recovery Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	75.1 76.1 72.6			% Rec. % Rec. % Rec.		8270C-S	5 11/05/08 5 11/05/08 5 11/05/08	1.

Polychlorinated Biphenyls PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1260	0 0 0 0 0 0 0 0	0.000085 0.00018 0.00019 0.00011 0.000043 0.00013 0.00017	0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055	mg/l mg/l mg/l mg/l mg/l mg/l	8082 8082 8082 8082 8082 8082 8082 8082	11/04/08 11/04/08	$1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$
---	--------------------------------------	---	---	--	--	----------------------	--

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 20 of 35

		mental Corp.					Mt. Ju (615) 1-800- Fax (6)	Lebanon Rd. liet, TN 37 758-5858 767-5859 15) 758-585 D. 62-08142 970	122 9
Matt Monroe Envirotest 3902 Braxton St Houston, TX 770			REPO	RT OF ANAI	LYSIS	November 1	0, 2008		
		177 - A 1841 - 842				ESC Sample	#: L	372815-05	
Date Received Description	:	November 01, 20 Tract 10 Delinea							
		MW-5S				Site ID :			
Sample ID	:	PWW-05				Project #	: Hou	08 1377	
Collected By Collection Date		M. Monroe 10/31/08 14:30				5744 - 19 6 7 (1997 - 1997)			
			Result	MDL	RDL	Units Q	Method	Date	Dil.

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

12

ie.

Page 21 of 35

ENVIRONMENTAL SCIENCE CORP.

Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 10, 2008

ESC Sample # : L372815-06 November 01, 2008 Date Received . Tract 10 Delineation Description : Site ID : Sample ID : MW-1D Project # : Hou 08 1377 M. Monroe Collected By 3 10/30/08 13:34 Collection Date : Units Q Method Date Dil. Result MDL RDL Parameter 6020 11/05/08 1 0.0016 0.00029 0.0010 mg/l Antimony 11/05/08 1 mg/l 6020 0.010 0.00022 0.0010 Arsenic 7470A 11/06/08 1 0.00017 0.000044 0.00020 mg/l J Mercury 6010B 11/09/08 1 0.38 0.0011 0.0050 mg/l Barium 11/09/08 6010B 1 Beryllium Cadmium 0.00075 0.0020 0.0050 0.0023 mg/l 6010B 11/09/08 1 mg/l 0.0056 11/09/08 11/09/08 0.0020 0.010 6010B 1 mg/l Chromium 0.075 ĩ 0.0060 0.020 mg/l 6010B 0.045 Copper 6010B 11/09/08 1 0.10 0.0019 0.0050 mg/l Lead 6010B 11/09/08 1 0.020 0.020 0.010 0.048 0.0098 mg/l Nickel 11/09/08 1 mg/l 6010B IJ 0.0065 Selenium 6010B 11/09/08 11 mg/l U Silver 11/09/08 0.0088 0.030 mg/l 6010B 0.18 Zinc Volatile Organics 0.0089 8260B 11/05/08 0.050 1 mg/l J 0.019 Acetone 11/05/08 11/05/08 0.050 8260B 1 mg/l U Acrolein 1 0.0017 0.010 mg/l 8260B Ū Acrylonitrile 11/05/08 1 8260B 0.00029 0.0010 mg/l U Benzene 8260B 11/05/08 1 mg/l U 0.00024 0.0010 Bromobenzene 0.0010 8260B 11/05/08 1 mg/l 0.00037 0.00051 Bromodichloromethane U 11/05/08 11/05/08 8260B 1 mg/l Bromoform U 1 mg/l Ū 0.00089 0.0050 8260B Bromomethane 8260B 11/05/08 1 U 0.00023 0.0010 mg/l n-Butylbenzene 8260B 11/05/08 1 mg/l U 0.00022 0.0010 sec-Butylbenzene 8260B 11/05/08 1 0.00020 0.0010 mg/l U tert-Butylbenzene 11/05/08 11/05/08 Ŭ 0.00031 0.0010 mg/l 8260B 8260B 1 Carbon tetrachloride mg/l 1 0.0010 U 0.00026 Chlorobenzene 8260B 11/05/08 Ū 0.00042 0.0010 mg/l Chlorodibromomethane 8260B 11/05/08 mg/l 1 0.0050 U 0.00086 Chloroethane mg/l 8260B 11/05/08 1 0.050 0.0014 2-Chloroethyl vinyl ether U 11/05/08 11/05/08 0.0050 0.0050 mg/l 8260B 8260B 1 U Chloroform 1 Ū 0.00025 0.0025 mg/1 Chloromethane 11/05/08 8260B 1 0.0010 mg/l U 0.00022 2-Chlorotoluene 8260B 11/05/08 1 ma/1 TT 0.00016 4-Chlorotoluene 8260B 11/05/08 1 0.00048 0.0050 mg/l U 1,2-Dibromo-3-Chloropropane 11/05/08 0.00048 0.0010 mg/l 8260B 1 U ,2-Dibromoethane 11/05/08 8260B 1 U 0.00028 0.0010 mg/l

1,4-Dichlorobenzene $\Pi = ND$ (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP)

RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

U

U

U

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

0.00029

0.00019

0.00030

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 22 of 35

8260B

8260B

8260B

mg/l

mg/l

mg/l

 $0.0010 \\ 0.0010$

0.0010

11/05/08

11/05/08

11/05/08

1

1

1

U = ND (Not Detected)

19

MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note: The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 23 of 35

ENVIRONMENTAL SCIENCE CORP.

5.5

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Matt Monroe Envirotest 3902 Braxton St.	REPO	ORT OF ANALY	ISIS	Novem	ber 1(0, 2008		
Houston, TX 77063				ESC S	ample	# : L3	872815-06	
Date Received : November 01, Description : Tract 10 Delin				Site	TD :			
Sample ID : MW-1D				Proje		: Hou (8 1377	
Collected By : M. Monroe Collection Date : 10/30/08 13:34								
Parameter	Result	MDL	RDL	Units	Q	Method	Date	Dil.
Dibromofluoromethane 4-Bromofluorobenzene	96.9 98.8			응 Rec. 응 Rec.		8260B 8260B	11/05/08 11/05/08	1 1
TNRCC Method 1005 - TPH TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35 Surrogate Recovery o-Terphenyl	U 12. 1.8 13. 99.0	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l mg/l % Rec.	J	TX 1005 TX 1005 TX 1005	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	1 1 1 1
Polynuclear Aromatic Hydrocarbons Anthracene Acenaphthene Acenaphthylene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene Surrogate Recovery Nitrobenzene-d5	U U U 0.000029 U U U U U U U U U U U U U U U U U U U	$\begin{array}{c} 0.000025\\$	0.000050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00025 0.00025 0.00025 0.00025	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J	8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	
2-Fluorobiphenyl p-Terphenyl-d14 Polychlorinated Biphenyls PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1260	87.7 U U U U U U U U U U	0.000077 0.00016 0.00018 0.000099 0.000039 0.00012 0.00012	0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	<pre>% Rec. mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J3	8270C-5 8082 8082 8082 8082 8082 8082 8082 808	11/05/08 11/03/08 11/03/08 11/03/08 11/03/08 11/03/08 11/03/08	8 1 8 1 8 1 8 1 8 1 8 1 8 1

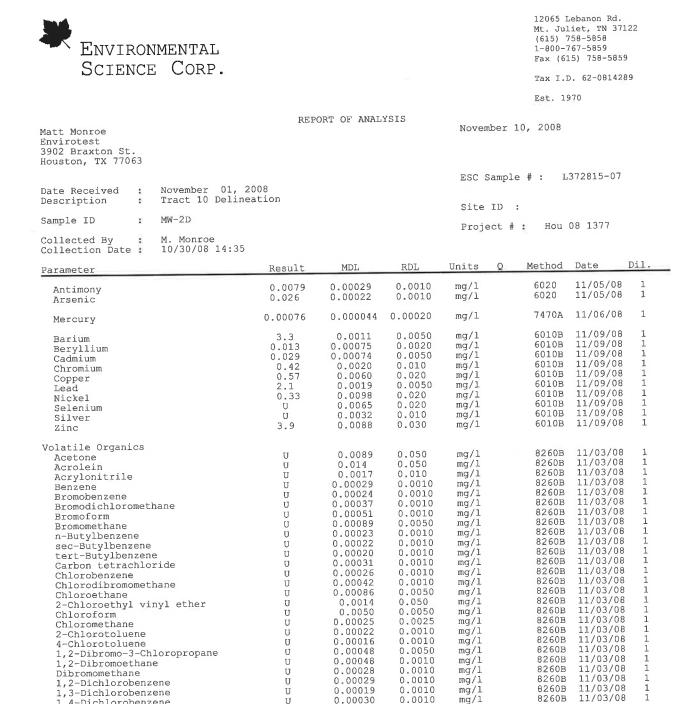
U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 24 of 35

	onmentai ce Corp					Mt. Ju (615) 1-800- Fax (6 Tax I.	Lebanon Rd. liet, TN 37 758-5858 767-5859 15) 758-585 D. 62-08142	122 9
		RE	PORT OF ANA	LYSIS		Est. 1	970	
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 7706	3				November	10, 2008		
					ESC Sampl	e # : 1	372815-06	
Date Received Description	November Tract 10	01, 2008 Delineation						
	Coll 1994 - Pressain				Site ID	•		
Sample ID	: MW-1D				Project #	: Hou	08 1377	
Collected By Collection Date		13:34						
Parameter		Result	MDL	RDL	Units Q	Method	Date	Dil.
PCBs Surrogates		83				0000	11/02/00	
Decachlorobiph Tetrachloro-m-		45.0 65.0			% Rec. % Rec.	8082 8082	11/03/08 11/03/08	


U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

ŵ.

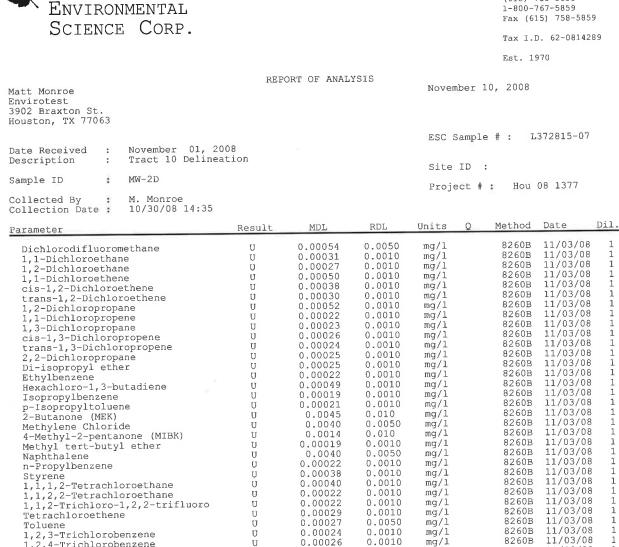
12

Page 25 of 35

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP)

RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL (TRRP)

Note:


1,4-Dichlorobenzene

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

U

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 26 of 35

1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Ū 0.00026 0.0010 0.0010 1,1,1-Trichloroethane U 0.00027 0.00045 0.0010 1,1,2-Trichloroethane U 0.00037 0.0010 U Trichloroethene 0.00029 0.0050 Trichlorofluoromethane U 1,2,3-Trichloropropane 0.0010 U 0.00036 0 00020 1,2,4-Trimethylbenzene П 0.00022 0.0010 1,2,3-Trimethylbenzene U

U

U

Xylenes, Total Surrogate Recovery U 0.00086 0.0030 95.2 Toluene-d8 U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Vinyl chloride

3,5-Trimethylbenzene

1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

0.00020

0.00027

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 27 of 35

8260B

8260B

8260B 8260B

8260B

8260B

8260B

8260B

8260B

8260B

mg/l

% Rec.

0.0010

0.0010

11/03/08

11/03/08

11/03/08 11/03/08

11/03/08

11/03/08

11/03/08

11/03/08

11/03/08

11/03/08

8260B 11/03/08

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ENVIRONMENTAL SCIENCE CORP. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063	REPO	RT OF ANAL	YSIS	Novemb	er 10), 2008		
Date Received : November 01, 20 Description : Tract 10 Delinea				ESC Sa		# : L3	72815-07	
Sample ID : MW-2D				Site I	D:			
Collected By : M. Monroe Collection Date : 10/30/08 14:35				Projec	:t #	: Hou (8 1377	
Parameter	Result	MDL	RDL	Units	Q	Method	Date	Dil.
Dibromofluoromethane 4-Bromofluorobenzene	95.0 96.3			% Rec. % Rec.		8260B 8260B	11/03/08 11/03/08	
TNRCC Method 1005 - TPH TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35 Surrogate Recovery o-Terphenyl	U U U U 104.	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l % Rec.		TX 1005 TX 1005 TX 1005	11/05/08 11/05/08 11/05/08 11/05/08	1 1 1
Polynuclear Aromatic Hydrocarbons Anthracene Acenaphthene Acenaphthylene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a, h) anthracene Fluoranthene Fluorene Indeno (1, 2, 3-cd) pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene Surogate Recovery Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14 Polychlorinated Biphenyls PCB 1016 PCB 1221 PCB 1232 PCB 1242	U 0.000038 U U U U U 0.000034 0.000034 0.000034 U 0.000080 0.000080 0.000040 U U 0.000040 U U U U U U U U U U U U U U U U U	0.000025 0.00025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025		<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J	8270C-S 8082 8082 8082	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PCB 1242 PCB 1254 PCB 1254 PCB 1260 U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOD	U U U = SQL (TRRP)	0.000039 0.00012 0.00016	0.00050 0.00050 0.00050	mg/l mg/l mg/l	J3	8082 8082 8082	11/03/00 11/03/00 11/03/00	8 1
Note: The reported analytical results rel				d.		1 5 5		

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 28 of 35

Environ Science	imental E Corp.					Mt. Ju (615) 1-800- Fax (6 Tax I.	Lebanon Rd. liet, TN 37 758-5858 767-5859 15) 758-585 D. 62-08142	122 9
						Est. 1	970	
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063		REPO	RT OF ANAI	YSIS	November 3	10, 2008		
					ESC Sample	e#: L	372815-07	
Date Received : Description :	November 01, 200 Tract 10 Delineat	8 ion			Site ID	6		
Sample ID :	MW-2D				Project #		08 1377	
Collected By : Collection Date :	M. Monroe 10/30/08 14:35				rioject #			
Parameter		Result	MDL	RDL	Units Q	Method	Date	Dil.

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

2.5

5

8

Page 29 of 35

Matt Monroe

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5858 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

November 10, 2008

Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063				NOVEL	nder 1	.0, 2006		
				ESC S	Sample	e#: L	372815-08	
Date Received : November 01, 2								
Description : Tract 10 Deline	ation			Site	ID :	1		
Sample ID : MW-3D				Proj	ect #	: Hou	08 1377	
Collected By : M. Monroe Collection Date : 10/31/08 10:34								
Parameter	Result	MDL	RDL	Units	Q	Method	Date	Dil.
Antimony Arsenic	0.0012 0.0081	0.00029 0.00022	0.0010 0.0010	mg/l mg/l		6020 6020	11/05/08 11/05/08	1
Mercury	0.000070	0.000044	0.00020	mg/l	J	7470A	11/06/08	1
Barium Beryllium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc	0.22 U 0.0013 0.011 U 0.025 U U U 0.042	$\begin{array}{c} 0.0011 \\ 0.00075 \\ 0.00074 \\ 0.0020 \\ 0.0060 \\ 0.0019 \\ 0.0098 \\ 0.0065 \\ 0.0032 \\ 0.0088 \end{array}$	$\begin{array}{c} 0.0050\\ 0.0020\\ 0.0050\\ 0.010\\ 0.020\\ 0.0050\\ 0.020\\ 0.020\\ 0.020\\ 0.010\\ 0.030\\ \end{array}$	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	J	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	11/09/08 11/09/08 11/09/08 11/09/08 11/09/08 11/09/08 11/09/08 11/09/08 11/09/08 11/09/08	1
Volatile Organics Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodethane 2-Chloroethyl vinyl ether Chloroform Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane Dibromomethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene	a a a a a a a a a a a a a a a a a a a	0.0089 0.014 0.0017 0.00029 0.00024 0.00051 0.00023 0.00022 0.00020 0.00020 0.00020 0.00042 0.00048 0.	0.050 0.050 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0050 0.0050 0.0050 0.0050 0.0050 0.0010 0.0000	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>		8260B 8260B	11/03/08 11/03/08	

.

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 30 of 35

SCIENCE CORP. Matt Monroe Invirotest 1902 Braxton St. Nouston, TX 77063 Date Received : November 01, 20 Description : Tract 10 Delinea Sample ID : MW-3D		ORT OF ANAL	YSIS	Nouromber	Tax I.D. 62-081428 Est. 1970	89
Invirotest 1902 Braxton St. Nouston, TX 77063 Date Received : November 01, 20 Description : Tract 10 Delinea		ORT OF ANAL	YSIS	Novombor	Est. 1970	
Invirotest 1902 Braxton St. Nouston, TX 77063 Date Received : November 01, 20 Description : Tract 10 Delinea		ORT OF ANAL	YSIS	November		
Invirotest 1902 Braxton St. Nouston, TX 77063 Date Received : November 01, 20 Description : Tract 10 Delinea				NOVERDEL	10, 2008	
Description : Tract 10 Delinea						
MW-3D				ESC Sampl		
Sample ID : MW-3D				Site ID Project #		
Collected By : M. Monroe Collection Date : 10/31/08 10:34				rioject		
Parameter	Result	MDL	RDL	Units Q	Method Date	Di
Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane cis-1,3-Dichloropropene 2,2-Dichloropropane Di-isopropyl ether Ethylbenzene Hexachloro-1,3-butadiene Isopropylbenzene p-Isopropyltoluene 2-Butanone (MEK) Methylene Chloride 4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether Naphthalene n-Propylbenzene 5tyrene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloropena 1,2,3-Trichloroethane 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,3-Trichloropena 1,2,4-Trimethylbenzene 1,3,5-T	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00054 0.00031 0.00027 0.00050 0.00052 0.00022 0.00022 0.00022 0.00024 0.00025 0.00025 0.00022 0.00022 0.00022 0.00049 0.00040 0.0019 0.0040 0.0019 0.0040 0.0019 0.0040 0.0019 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.0040 0.0022 0.00027 0.00020 0.00027 0.00020 0.00027 0.00020 0.00027 0.00020 0.00027	0.0050 0.0010 0.00	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	8260B 11/03/08 8260B 11/03/08	

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

5.2

.

Page 31 of 35

Environmental SCIENCE CORP. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Matt Monroe Envirotest 3902 Braxton St.		REPC	ORT OF ANAL	YSIS	Novem	ber 1	LO, 2008		
Houston, TX 77063					ESC S	ample	e # : L	372815-08	
Date Received : Description :	November 01, 20 Tract 10 Delinea				Site	ID :	e.		
Sample ID :	MW-3D				Proje	ct #	: Hou	08 1377	
Collected By : Collection Date :	M. Monroe 10/31/08 10:34								
Parameter		Result	MDL	RDL	Units	Q	Method	Date	Dil.
Dibromofluorometha 4-Bromofluorobenzo		95.1 97.0			% Rec. % Rec.		8260B 8260B	11/03/08 11/03/08	1 1
INRCC Method 1005 - TPH C6 - C12 TPH C12 - C28 TPH C28 - C35 TPH C6 - C35	ТРН	บ บ บ บ	0.98 0.98 0.98 1.6	5.0 5.0 5.0 5.0	mg/l mg/l mg/l mg/l		TX 1005 TX 1005	11/05/08 11/05/08 11/05/08 11/05/08	1 1 1 1
Surrogate Recovery o-Terphenyl		106.			% Rec.		TX 1005	11/05/08	1
Polynuclear Aromati- Anthracene Acenaphthene Acenaphthylene Benzo (a) anthracen Benzo (a) pyrene Benzo (b) fluoranth Benzo (g, h, i) peryl Benzo (k) fluoranth Chrysene Dibenz (a, h) anthra Fluoranthene Fluoranthene Fluorene Indeno (1, 2, 3-cd) p Naphthalene Phenanthrene Pyrene 1-Methylnaphthale 2-Methylnaphthale Surrogate Recovery Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	e ene ene cene yrene ne	0.000042 0.000043 U 0.000026 0.000030 U U U 0.000082 U U U 0.000043 0.000098 U U U 73.4 72.3 82.4	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000050 0.00050	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	J J J	8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S 8270C-S	11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08 11/06/08	1 1 1 1 1 1 1 1
Polychlorinated Bip PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1260	henyls	บ บ บ บ บ บ บ	0.000077 0.00016 0.00018 0.000099 0.000039 0.000012 0.00012	0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	mg/l mg/l mg/l mg/l mg/l mg/l		8082 8082 8082 8082 8082 8082 8082 8082	11/04/08 11/04/08 11/04/08 11/04/08 11/04/08 11/04/08 11/04/08	1 1 1 1

1.12

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 32 of 35

		mental Corp.					12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289
							Est. 1970
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 7706			REPO	RT OF ANAI	YSIS	November 1	0, 2008
		2 22 223	242			ESC Sample	a # : L372815-08
Date Received Description	:	November 01, 200 Tract 10 Delineat				Site ID :	
Sample ID	:	MW-3D				Project #	: Hou 08 1377
Collected By Collection Date	:	M. Monroe 10/31/08 10:34				110,000 \$	8
			Result	MDL	RDL	Units Q	Method Date Dil.

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/10/08 14:04 Printed: 11/10/08 14:05

Page 33 of 35

Attachment A List of Analytes with QC Qualifiers

4

÷

6

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L372815-01	WG391831	SAMP	Benzo (a) pyrene	R528727	J
T3/2012-01	WG391737	SAMP	Acetone	R527033	J
	WG391737	SAMP	Acrolein	R527033	J4
	WG391737	SAMP	Tetrachloroethene	R527033	J
	WG392192	SAMP	Cadmium	R530612	J
	WG392192	SAMP	Nickel	R530612	J
	WG391779	SAMP	Mercury	R530942	J
L372815-02	WG391831	SAMP	Benzo (a) pyrene	R528727	J
10/2010 02	WG391737	SAMP	Acrolein	R527033	J4J3
	WG391737	SAMP	2-Chloroethyl vinyl ether	R527033	J3
	WG392192	SAMP	Cadmium	R530611	J
	WG392192	SAMP	Chromium	R530611	J
	WG392192	SAMP	Copper	R530611	J
	WG391779	SAMP	Mercury	R530942	J
T 272015_03	WG391829	SAMP	Decachlorobiphenyl	R527806	J1
L372815-03	WG391829 WG391831	SAMP	Benzo (a) anthracene	R528727	J
	WG391831 WG391737	SAMP	Acrolein	R527033	J4J3
	WG391737 WG391737	SAMP	2-Chloroethyl vinyl ether	R527033	J3
	WG392192	SAMP	Beryllium	R530611	Ĵ
			Cadmium	R530611	J
	WG392192	SAMP		R530611	J
	WG392192	SAMP	Silver	R528727	J
L372815-04	WG391831	SAMP	Acenaphthene	R528727	J
	WG391831	SAMP	Benzo (a) pyrene	R528727	J
	WG391831	SAMP	Fluoranthene	R528727	J
	WG391831	SAMP	Fluorene	R527033	J4J3
	WG391737	SAMP	Acrolein	R527033	J3
	WG391737	SAMP	2-Chloroethyl vinyl ether	R530611	J
	WG392192	SAMP	Cadmium	R530611	J
	WG392192	SAMP	Silver	R530942	J
	WG391779	SAMP	Mercury	R528727	J
L372815-05	WG391831	SAMP	Benzo (a) pyrene	R528727	J
	WG391831	SAMP	Benzo(g,h,i)perylene	R528727	J
	WG391831	SAMP	Chrysene	R528727	J
	WG391831	SAMP	Indeno(1,2,3-cd)pyrene	R530611	J
	WG392192	SAMP	Silver	R530611	J
	WG392192	SAMP	Zinc	R530942	J
	WG391779	SAMP	Mercury	R527247	J3
L372815-06	WG391767	SAMP	PCB 1260	R528615	J
	WG391791	SAMP	трн С28 - С35	R528015	J
	WG391831	SAMP	Benzo(a)pyrene	R528127 R528166	J
	WG392107	SAMP	Acetone	R528166	J
	WG392107	SAMP	Trichloroethene		J
	WG391779	SAMP	Mercury	R530942	J3
L372815-07	WG391767	SAMP	PCB 1260	R527247	J
	WG391831	SAMP	Acenaphthene	R528727	
	WG391831	SAMP	Fluoranthene	R528727 R528727	J J
	WG391831	SAMP	Fluorene		J
	WG391831	SAMP	Pyrene	R528727	J
L372815-08	WG391831	SAMP	Anthracene	R528727	
	WG391831	SAMP	Acenaphthene	R528727	J
	WG391831	SAMP	Benzo (a) anthracene	R528727	J
	WG391831	SAMP	Benzo(a)pyrene	R528727	J
	WG391831	SAMP	Phenanthrene	R528727	J
	WG392192	SAMP	Cadmium	R530611	J J
	WG391780	SAMP	Mercury	R530941	U

Page 34 of 35

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning								
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.								
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits								
J3	The associated batch QC was outside the established quality control range for precision.								
J4	The associated batch QC was outside the established quality control range for accuracy.								

Qualifier Report Information

£.,

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

- Definitions Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chem-ically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- Tentatively Identified Compound: Compounds detected in samples that are TIC not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 35 of 35

Summary of Remarks For Samples Printed 11/10/08 at 14:05:16

TSR Signing Reports: 134 R5 - Desired TAT

Client wants pH reported on all SS requesting metals per JB Arsenic H20 log method 6020 Sample: L372815-01 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-02 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-04 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-05 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-06 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-06 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-07 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-07 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04 Sample: L372815-08 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/07/08 00:00 RPT Date: 11/10/08 14:04

Quality Control Summary

Envirotest

Test: Mercury by Method 7470A Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -02, -01, -06, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/6/2008 2:51:00 PM Instrument ID: CVAA3 Analyst: 429 Analytic Batch: WG391779

L372815

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL	MDL
Mercury		<0.0002	<0.00004

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Mercury	0.0030	0.0030	101	85 - 115	

Environmental Science Corporation Quality Control Summary Envirotest *Test:* Mercury by Method 7470A Matrix: Water - mg/L *Project:* Tract 10 Delineation *Project No:* Hou 08 1377 Login No:L372815

Login No:L372815 Sample Number:L372815-08, -07 Sample Date:10/31/2008 Extraction Date:11/2/2008 Analysis Date:11/6/2008 1:42:00 PM Instrument ID:CVAA3 Analyst:429 Analytic Batch:WG391780

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL	MDL
Mercury		<0.0002	<0.00004

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Mercury	0.0030	0.0030	99.7	85 - 115	

Environmental Science Corporation Quality Control Summary

Envirotest

Test: Mercury by Method 7470A Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number:L372815-05, -02, -01, -06, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/6/2008 2:51:00 PM Instrument ID:CVAA3 Analyst:429 Analytic Batch: WG391779

L372815

EPA ID: TN00003

Sample Duplicate L372648-05

Name	Sample Results	Results Duplicate	% RPD	Limit	Qualifiers
Mercury	0.0000	0.0000			

Matrix Spike/Matrix Spike Duplicate L372648-05

Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	% Control Qualifier RPD Limits Qualifier
	0.0030	0.0000	0.0027	89.7	0.0028	93.0	70-130	3.6 20

Quality Control Summary

Envirotest

Test: Mercury by Method 7470A Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-08, -07 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/6/2008 1:42:00 PM Instrument ID: CVAA3 Analyst: 429 Analytic Batch: WG391780 L372815

EPA ID: TN00003

Sample Duplicate L372623-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Mercury	0.0000	0.0000			

Matrix Spike/Matrix Spike Duplicate

L372623-01

Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	% Control Qualifier RPD Limits Qualifier
		0.0000					70-130	3.2 20

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L372815 Sample Number:L372815-01, -02, -06, -07, -08, -04, -05, -03 Sample Date: 10/31/2008 Extraction Date: 11/5/2008 Analysis Date: 11/8/2008 Instrument ID:ICP7 Analyst:438 Analytic Batch: WG392192 L372815

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL	MDL
Barium	7440-39-3	< 0.00500	<0.00107
Beryllium	7440-41-7	< 0.00200	<0.000750
Cadmium	7440-43-9	< 0.00500	<0.000740
Chromium	7440-47-3	< 0.0100	< 0.00197
Copper	7440-50-8	< 0.0200	< 0.00600
Lead	7439-92-1	< 0.00500	<0.00191
Nickel	7440-02-0	< 0.0200	< 0.00984
Selenium	7782-49-2	< 0.0200	0.0179
Silver	7440-22-4	< 0.0100	0.00560
Zinc	7440-66-6	< 0.0300	<0.00880

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -06, -07, -08, -04, -05, -03 Sample Date: 10/31/2008 Extraction Date: 11/5/2008 Analysis Date: 11/8/2008 Instrument ID: ICP7 Analyst: 438 Analytic Batch: WG392192 L372815

EPA ID: TN00003

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
•••••••					
Barium	1.13	1.13	100	85 - 115	
Beryllium	1.13	1.12	99.1	85 - 115	
Cadmium	1.13	1.15	102	85 - 115	
Chromium	1.13	1.12	99.1	85 - 115	
Copper	1.13	1.07	94.7	85 - 115	
Lead	1.13	1.19	105	85 - 115	
Nickel	1.13	1.11	98.2	85 - 115	
Selenium	1.13	1.08	95.6	85 - 115	
Silver	1.13	1.09	96.5	85 - 115	
Zinc	1.13	1.09	96.5	85 - 115	

Laboratory Control Sample (LCS)

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number:L372815-01, -02, -06, -07, -08, -04, -05, -03 Sample Date: 10/31/2008 Extraction Date: 11/5/2008 Analysis Date: 11/8/2008 Instrument ID:ICP7 Analyst:438 Analytic Batch:WG392192

EPA ID: TN00003

Sample Duplicate L372863-10

Name	Sample Results	Results Duplicate	% RPD	Limit	Qualifiers
Barium	0.0331	0.0330	0.3	20	
Beryllium	0.00000	0.00000			
Cadmium	0.00000	0.00000			
Chromium	0.00000	0.00000			
Copper	0.00000	0.00000			
Lead	0.00876	0.00790	10	20	
Nickel	0.00000	0.00000			
Selenium	0.00000	0.00000			
Silver	0.0162	0.00000			
Zinc	0.00000	0.00000			

L372815

62 of 107

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -06, -07, -08, -04, -05, -03 Sample Date: 10/31/2008 Extraction Date: 11/5/2008 Analysis Date: 11/8/2008 Instrument ID: ICP7 Analyst: 438 Analytic Batch: WG392192 L372815

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate L372863-10

Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	% Qualifier RPD	Control Limits Qualifier
Barium	1.13	0.0330	1.18	102	1.13	97.1	75-125	4.3	20
Beryllium	1.13	0.00000	1.12	99.1	1.12	99.1	75-125	0.0	20
Cadmium	1.13	0.00000	1.17	104	1.13	100	75-125	3.5	20
Chromium	1.13	0.00000	1.13	100	1.09	96.5	75-125	3.6	20
Copper	1.13	0.00000	1.19	105	1.14	101	75-125	4.3	20
Lead	1.13	0.00000	1.17	104	1.14	101	75-125	2.6	20
Nickel	1.13	0.00000	1.14	101	1.13	100	75-125	0.9	20
Selenium	1.13	0.00000	1.11	98.2	1.08	95.6	75-125	2.7	20
Silver	1.13	0.00000	0.227	20.1	0.240	21.2	75-125	J6 5.6	20
Zinc	1.13	0.00000	1.17	104	1.13	100	75-125	3.5	20

Ŕ

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6020 Matrix: Water - mg/L Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L372815 Sample Number:L372815-04, -06, -01, -05, -07, -03, -02, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 Instrument ID:ICPMS3 Analyst: 338 Analytic Batch: WG391996 L372815

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL	MDL
Antimony	7440-36-0	<0.00100	0.000640
Arsenic	7440-38-2	<0.00100	0.000740

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Antimony	0.0567	0.0604	107	85 - 115	
Arsenic	0.0567	0.0551	97.2	85 - 115	

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6020 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-04, -06, -01, -05, -07, -03, -02, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 Instrument ID: ICPMS3 Analyst: 338 Analytic Batch: WG391996

EPA ID: TN00003

L372815

Sample Duplicate L372863-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Antimony	0.00138	0.00110	23	20	J3
Arsenic	0.00103	0.00100	3.0	20	

Matrix Spike/Matrix Spike Duplicate L372863-01

Analyte	Spike Value	Sample	MS	'% Rec	MSD	% Rec	Control Limits	% C Qualifier RPD I	Control Limits Qualifier
Antimony Arsenic		0.00110 0.00100			0.0648 0.0583		75-125 75-125	0.8 1.4	20 20

Quality Control Summary

Envirotest

Test: Trace Metals by Method 6020 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-04, -06, -01, -05, -07, -03, -02, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 Instrument ID: ICPMS3 Analyst: 338 Analytic Batch: WG391996

L372815

EPA ID: TN00003

Sample Duplicate L372863-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Antimony	0.00138	0.00110	23	20	J3
Arsenic	0.00103	0.00100	3.0	20	

Matrix Spike/Matrix Spike Duplicate L372863-01

Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	,.	Control Limits Qualifier
Antimony Arsenic		0.00110 0.00100			0.0648 0.0583		75-125 75-125	0.8 1.4	20 20

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

Method Blank

1,1,1,2-Tetrachloroethane $630-20-6$ <0.001 <0.0003 1,1,1-Trichloroethane71-55-6 <0.001 <0.0003 1,1,2-Tetrachloroethane79-34-5 <0.001 <0.0003 1,1,2-Trichloroethane79-00-5 <0.001 <0.0003 1,1,2-Trichloroethane76-13-1 <0.001 <0.0003 1,1-Dichloroethane75-35-4 <0.001 <0.0003 1,1-Dichloroethane75-35-4 <0.001 <0.0003 1,1-Dichloroethane87-61-6 <0.001 <0.0003 1,2,3-Trichloroptopane96-18-4 <0.001 <0.0003 1,2,3-Trichloroptopane95-63-6 <0.001 <0.0003 1,2,4-Trichlorobenzene120-82-1 <0.001 <0.0003 1,2,4-Trichlorobenzene95-63-6 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-12-8 <0.005 <0.0016 1,2-Dibromo-3-Chloropropane95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene107-06-2 <0.001 <0.0003 1,2-Dichlorobenzene108-67-8 <0.001 <0.0003 1,3-5-Trimethylbenzene594-70 <0.001 <0.0003 1,3-Dichloropropane142-28-9 <0.001 <0.0003 1,3-Dichloropenzene594-70-7 <0.001 <0.0003 1,3-Dichloropropane194-20-7 <0.001 <0.0003 1,3-Dichloropropane194-20-7 <0.001 <0.0003 1,3-Dichloropropane594-20-7 <0.001 <0.0003 1,3-Dichloroponzene594-78	Analyte	CAS	PQL	MDL
1,1,1-Trichlorobrane71-55-6 <0.001 <0.0003 1,1,2-Trichlorocthane79-34-5 <0.001 <0.0003 1,1,2-Trichlorocthane79-00-5 <0.001 <0.0003 1,1,2-Trichlorocthane76-13-1 <0.001 <0.0003 1,1-Dichlorocthane75-34-3 <0.001 <0.0003 1,1-Dichlorocthane75-35-4 <0.001 <0.0003 1,1-Dichlorocthene75-35-4 <0.001 <0.0003 1,2,3-Trichloropropane96-18-4 <0.001 <0.0003 1,2,3-Trichloropropane96-18-4 <0.001 <0.0003 1,2,4-Trichloropropane926-73-8 <0.001 <0.0003 1,2,4-Trichloropropane95-63-6 <0.001 <0.0003 1,2,4-Trimethylbenzene95-63-6 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-12-8 <0.001 <0.0003 1,2-Dichloropenzene95-50-1 <0.001 <0.0003 1,2-Dichloropenzene95-50-1 <0.001 <0.0003 1,2-Dichloropenzene106-93-4 <0.001 <0.0003 1,3-Dichloropropane78-87-5 <0.001 <0.0003 1,3-Dichloropropane142-28-9 <0.001 <0.0003 1,3-Dichloropenzene106-46-7 <0.001 <0.0003 1,3-Dichloropenzene106-46-7 <0.001 <0.0003 1,3-Dichloropenzene106-43-4 <0.001 <0.0003 2,2-Dichloropenzene106-43-4 <0.001 <0.0003 2,2-Dichloropenzene106-43-4 <0.001 <	S		0.001	-0.0002
1,1,2,2-Tetrachloroethane79-34-5 0.001 0.0003 1,1,2,2-Tetrachloroethane79-00-5 0.001 0.0003 1,1,2-Trichloro-1,2,2-trifluoroethane76-13-1 0.001 0.0003 1,1-Dichloroethane75-34-3 0.001 0.0003 1,1-Dichloroethane75-35-4 0.001 0.0003 1,1-Dichloropropene563-58-6 0.001 0.0003 1,2,3-Trichloropropane96-18-4 0.001 0.0003 1,2,3-Trichloropropane96-18-4 0.001 0.0003 1,2,4-Trichlorobenzene120-82-1 0.001 0.0003 1,2,4-Trimethylbenzene95-63-6 0.001 0.0003 1,2-Dibromo-3-Chloropropane96-12-8 0.001 0.0003 1,2-Dichlorobenzene95-50-1 0.001 0.0003 1,2-Dichlorobenzene95-50-1 0.001 0.0003 1,2-Dichloropenzene95-50-1 0.001 0.0003 1,2-Dichloropenzene78-87-5 0.001 0.0003 1,3-Dichloropopane78-87-5 0.001 0.0003 1,3-Dichloropopane142-28-9 0.001 0.0003 1,3-Dichloropopane94-20-7 0.001 0.0003 2,2-Dichloropopane594-20-7 0.001 0.0003 2,2-Dichloropopane594-20-7 0.001 0.0003 2,2-Dichloropopane594-20-7 0.001 0.0003 2,2-Dichloropopane95-49-8 0.001 0.0003 2,2-Dichloropopane96-49-8 0.001 0.0003 2,2-D				
1,1,2-Trichloroblane79-00-5<0.001<0.00031,1,2-Trichloro-1,2,2-trifluoroethane76-13-1<0.001				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
1,1-Dichlorothane75-34-3 $<$ 0.001 $<$ 0.00031,1-Dichlorothane75-34-3 $<$ 0.001 $<$ 0.00031,1-Dichloroptopene563-58-6 $<$ 0.001 $<$ 0.00031,2,3-Trichlorobenzene87-61-6 $<$ 0.001 $<$ 0.00031,2,3-Trichloroptopane96-18-4 $<$ 0.001 $<$ 0.00031,2,3-Trichloroptopane96-18-4 $<$ 0.001 $<$ 0.00031,2,4-Trichlorobenzene526-73-8 $<$ 0.001 $<$ 0.00031,2,4-Trinethylbenzene95-63-6 $<$ 0.001 $<$ 0.00031,2-Dibromo-3-Chloropropane96-12-8 $<$ 0.001 $<$ 0.00031,2-Dibromo-3-Chloropropane95-50-1 $<$ 0.001 $<$ 0.00031,2-Dichlorobenzene95-50-1 $<$ 0.001 $<$ 0.00031,2-Dichloroptopane78-87-5 $<$ 0.001 $<$ 0.00031,3-Dichlorobenzene541-73-1 $<$ 0.001 $<$ 0.00031,3-Dichlorobenzene594-20-7 $<$ 0.001 $<$ 0.00031,3-Dichloropropane594-20-7 $<$ 0.001 $<$ 0.00032-Butanone (MEK)78-93-3 $<$ 0.001 $<$ 0.00032-Chlorotoluene95-49-8 $<$ 0.001 $<$ 0.00032-Chlorotoluene95-49-8 $<$ 0.001 $<$ 0.00034-Chlorotoluene106-43-4 $<$ 0.001 $<$ 0.00034-Chlorotoluene106-43-4 $<$ 0.001 $<$ 0.00034-Chlorotoluene107-13-1 $<$ 0.001 $<$ 0.0033Benzene71-43-2 $<$ 0.001 $<$ 0.0033Benzene71-43-2 $<$ 0.001 $<$ 0.0033Bromobenzene				
1,1-Dichlorochlane15.51.510.001 < 0.0003 1,1-Dichloroptene563-58-6 < 0.001 < 0.0003 1,2,3-Trichlorobenzene87-61-6 < 0.001 < 0.0003 1,2,3-Trichloropropane96-18-4 < 0.001 < 0.0003 1,2,3-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trimethylbenzene95-63-6 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane96-12-8 < 0.001 < 0.0003 1,2-Dibromo-st-Chloropropane96-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene106-93-4 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene106-78 < 0.001 < 0.0003 1,3-Dichlorobenzene108-67-8 < 0.001 < 0.0003 1,3-Dichlorobenzene541-73-1 < 0.001 < 0.0003 1,4-Dichlorobenzene106-45-7 < 0.001 < 0.0003 2,2-Dichloropopane594-20-7 < 0.001 < 0.0003 2,2-Dichloropopane594-20-7 < 0.001 < 0.0003 2,-Chlorothluene95-49-8 < 0.001 < 0.0003 2,-Chlorothluene106-43-4 < 0.001 < 0.0003 2,-Chlorothluene106-43-4 < 0.001 < 0.0003 4-Chlorothluene	1,1,2-Trichloro-1,2,2-trifluoroetha			
1,1-Dichlorobenzene16:3-58-6 < 0.001 < 0.0003 1,2,3-Trichloropenzene87-61-6 < 0.001 < 0.0003 1,2,3-Trichloropenzene96-18-4 < 0.001 < 0.0003 1,2,3-Trichloropenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trimethylbenzene95-63-6 < 0.001 < 0.0003 1,2,4-Trimethylbenzene95-63-6 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane96-12-8 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene78-87-5 < 0.001 < 0.0003 1,3-Dichlorobenzene108-67-8 < 0.001 < 0.0003 1,3-Dichlorobenzene541-73-1 < 0.001 < 0.0003 1,4-Dichlorobenzene106-46-7 < 0.001 < 0.0003 1,4-Dichlorobenzene106-46-7 < 0.001 < 0.0003 2,2-Dichloroppane192-420-7 < 0.001 < 0.0003 2,2-Dichloroppane594-20-7 < 0.001 < 0.0003 2,Chlorotoluene95-49-8 < 0.001 < 0.0003 2,Chlorotoluene95-49-8 < 0.001 < 0.0003 4,-Chlorotoluene106-43-4 < 0.001 < 0.0003 4,-Chlorotoluene106-43-4 < 0.001 < 0.0003 4,-Chlorotoluene106-43-4 < 0.001 < 0.0003 4,-Chlorotoluene106-4	1,1-Dichloroethane			
1,2,3-Trichlorobenzene87-61-6 <0.001 <0.0003 1,2,3-Trichlorobenzene96-18-4 <0.001 <0.0003 1,2,3-Trichlorobenzene120-82-1 <0.001 <0.0003 1,2,4-Trichlorobenzene120-82-1 <0.001 <0.0003 1,2,4-Trimethylbenzene95-63-6 <0.001 <0.0003 1,2,2-Dibromo-3-Chloropropane96-12-8 <0.001 <0.0003 1,2-Dibromoethane106-93-4 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene108-67-8 <0.001 <0.0003 1,3-Dichlorobenzene541-73-1 <0.001 <0.0003 1,3-Dichlorobenzene542-89 <0.001 <0.0003 1,4-Dichlorobenzene106-46-7 <0.001 <0.0003 2,2-Dichloropopane594-20-7 <0.001 <0.0003 2,2-Dichloropopane594-20-7 <0.001 <0.0003 2,2-Dichloropopane594-20-7 <0.001 <0.0003 2,Chloroethyl vinyl ether110-75-8 <0.001 <0.0003 2,Chloroethyl vinyl ether110-75-8 <0.001 <0.0003 2,Chlorotoluene95-49-8 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0	1,1-Dichloroethene	75-35-4		
1,2,3-Trichloroberizene96-18-4 <0.001 <0.0003 1,2,3-Trinethylbenzene526-73-8 <0.001 <0.0003 1,2,4-Trinethylbenzene120-82-1 <0.001 <0.0003 1,2,4-Trinethylbenzene95-63-6 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-12-8 <0.001 <0.0003 1,2-Dibromoethane106-93-4 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene107-06-2 <0.001 <0.0003 1,3-Dichloropropane78-87-5 <0.001 <0.0003 1,3-Dichlorobenzene541-73-1 <0.001 <0.0003 1,3-Dichloroppane142-28-9 <0.001 <0.0003 1,4-Dichlorobenzene106-46-7 <0.001 <0.0003 2,2-Dichloroppane594-20-7 <0.001 <0.0003 2,2-Dichloroppane594-20-7 <0.001 <0.0003 2,2-Dichloroppane594-20-7 <0.001 <0.0003 2,2-Dichloroppane594-20-7 <0.001 <0.0003 2,Chloroethyl vinyl ether110-75-8 <0.001 <0.0003 2-Chlorotoluene95-49-8 <0.001 <0.0003 2-Chlorotoluene106-43-4 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0003 <t< td=""><td>1,1-Dichloropropene</td><td>563-58-6</td><td></td><td></td></t<>	1,1-Dichloropropene	563-58-6		
1,2,3-Trimethylbenzene526-73-8 (0.001) (0.0003) 1,2,4-Trichlorobenzene120-82-1 (0.001) (0.0003) 1,2,4-Trimethylbenzene95-63-6 (0.001) (0.0003) 1,2-Dibromo-3-Chloropropane96-12-8 (0.001) (0.0003) 1,2-Dibromo-3-Chloropropane96-50-1 (0.001) (0.0003) 1,2-Dichlorobenzene95-50-1 (0.001) (0.0003) 1,2-Dichlorobenzene95-50-1 (0.001) (0.0003) 1,2-Dichloropropane78-87-5 (0.001) (0.0003) 1,3-Dichloropropane78-87-5 (0.001) (0.0003) 1,3-Dichlorobenzene541-73-1 (0.001) (0.0003) 1,3-Dichloropropane142-28-9 (0.001) (0.0003) 1,4-Dichlorobenzene106-46-7 (0.001) (0.0003) 2,2-Dichloropropane594-20-7 (0.001) (0.0003) 2,2-Dichloropropane594-20-7 (0.001) (0.0003) 2,Chlorotoluene95-49-8 (0.001) (0.0003) 2-Chlorotoluene95-49-8 (0.001) (0.0003) 4-Chlorotoluene106-43-4 (0.001) (0.003) Acetone $67-64-1$ (0.050) (0.0165) Acrolein107-02-8 (0.050) (0.0165) Acrolein107-13-1 (0.001) (0.003) Benzene71-43-2 (0.001) (0.003) Bromobenzene108-86-1 (0.001) (0.003)	1,2,3-Trichlorobenzene	87-61-6		
1,2,4-Trinchlorobenzene120-82-1<0.001<0.00031,2,4-Trimethylbenzene95-63-6<0.001	1,2,3-Trichloropropane	96-18-4		
1,2,4-Trimethylbenzene95-63-6 < 0.001 < 0.003 1,2-Dibromo-3-Chloropropane96-12-8 < 0.005 < 0.0016 1,2-Dibromothane106-93-4 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichloropropane78-87-5 < 0.001 < 0.0003 1,2-Dichloropropane78-87-5 < 0.001 < 0.0003 1,3,5-Trimethylbenzene108-67-8 < 0.001 < 0.0003 1,3-Dichloropropane142-28-9 < 0.001 < 0.0003 1,3-Dichloropropane142-28-9 < 0.001 < 0.0003 1,4-Dichlorobenzene106-46-7 < 0.001 < 0.0003 2,2-Dichloropropane594-20-7 < 0.001 < 0.0003 2,2-Dichloropropane594-20-7 < 0.001 < 0.0003 2,2-Dichloropropane95-49-8 < 0.001 < 0.0003 2-Chlorotoluene95-49-8 < 0.001 < 0.0003 2-Chlorotoluene106-43-4 < 0.001 < 0.0003 4-Chlorotoluene106-43-4 < 0.001 < 0.0003 4-Chlorotoluene107-02-8 < 0.050 < 0.0165 Acerone67-64-1 < 0.050 < 0.0165 Acerolein107-02-8 < 0.001 < 0.0003 Benzene71-43-2 < 0.001 < 0.0003 Bromobenzene108-86-1 < 0.001 < 0.0003	1,2,3-Trimethylbenzene	526-73-8		
1,2-Dibromo-3-Chloropropane96-12-8<0.005<0.00161,2-Dibromoethane106-93-4<0.001	1,2,4-Trichlorobenzene	120-82-1	< 0.001	
1,2-Dibromo-3-Chloropropane96-12-8<0.005<0.00161,2-Dibromoethane106-93-4<0.001	1,2,4-Trimethylbenzene	95-63-6	< 0.001	
1,2-Dibromoethane106-93-4<0.001<0.00031,2-Dichlorobenzene95-50-1<0.001		96-12-8	< 0.005	
1,2-Dichlorobenzene95-50-1<0.001<0.00031,2-Dichloroethane107-06-2<0.001		106-93-4	< 0.001	< 0.0003
1,2-Dichloroethane107-06-2<0.001<0.00031,2-Dichloropropane78-87-5<0.001		95-50-1	<0.001	< 0.0003
1,2-Dichloropropane $78-87-5$ <0.001 <0.0003 1,3,5-Trimethylbenzene $108-67-8$ <0.001 <0.0003 1,3-Dichlorobenzene $541-73-1$ <0.001 <0.0003 1,3-Dichloropropane $142-28-9$ <0.001 <0.0003 1,4-Dichlorobenzene $106-46-7$ <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.001 <0.0003 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.001 <0.0003 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		107-06-2	<0.001	< 0.0003
1,3,5-Trimethylbenzene108-67-8 < 0.001 < 0.0003 1,3-Dichlorobenzene541-73-1 < 0.001 < 0.0003 1,3-Dichloropropane142-28-9 < 0.001 < 0.0003 1,4-Dichlorobenzene106-46-7 < 0.001 < 0.0003 2,2-Dichloropropane594-20-7 < 0.001 < 0.0003 2-Butanone (MEK)78-93-3 < 0.010 < 0.0003 2-Chloroethyl vinyl ether110-75-8 < 0.001 < 0.0003 2-Chlorotoluene95-49-8 < 0.001 < 0.0003 4-Chlorotoluene106-43-4 < 0.001 < 0.0003 4-Methyl-2-pentanone (MIBK)108-10-1 < 0.010 < 0.0033 Acetone67-64-1 < 0.050 < 0.0165 Acrolein107-02-8 < 0.050 < 0.0165 Acrylonitrile107-13-1 < 0.001 < 0.0003 Benzene71-43-2 < 0.001 < 0.0003 Bromobenzene108-86-1 < 0.001 < 0.0003		78-87-5	<0.001	< 0.0003
1,3-Dichlorobenzene $541-73-1$ <0.001 <0.0003 1,3-Dichloropropane $142-28-9$ <0.001 <0.0003 1,4-Dichlorobenzene $106-46-7$ <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		108-67-8	< 0.001	< 0.0003
1,3-Dichloropropane $142-28-9$ <0.001 <0.0003 1,4-Dichlorobenzene $106-46-7$ <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		541-73-1	< 0.001	< 0.0003
1,4-Dichlorobenzene $106-46-7$ <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		142-28-9	< 0.001	< 0.0003
2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		106-46-7	< 0.001	< 0.0003
2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		594-20-7	<0.001	< 0.0003
2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		78-93-3	<0.010	< 0.0033
2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033 Benzene $71-43-2$ <0.001 <0.0003 Bromobenzene $108-86-1$ <0.001 <0.0003		110-75-8	<0.001	< 0.0003
4-Chlorotoluene 106-43-4 <0.001		95-49-8	< 0.001	< 0.0003
4-Methyl-2-pentanone (MIBK) 108-10-1 <0.010			< 0.001	< 0.0003
Acetone67-64-1<0.050<0.0165Acrolein107-02-8<0.050			<0.010	< 0.0033
Acrolein107-02-8<0.050<0.0165Acrylonitrile107-13-1<0.010			< 0.050	< 0.0165
Acrylonitrile107-13-1<0.010<0.0033Benzene71-43-2<0.001			< 0.050	< 0.0165
Benzene 71-43-2 <0.001 <0.0003 Bromobenzene 108-86-1 <0.001			< 0.010	< 0.0033
Bromobenzene 108-86-1 <0.001 <0.0003	-		<0.001	< 0.0003
			<0.001	< 0.0003
	Bromodichloromethane	75-27-4		< 0.0003

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737

L372815

EPA ID: TN00003

Me			
Analyte	CAS	PQL	MDL
Bromoform	75-25-2	< 0.001	<0.000
Bromomethane	74-83-9	< 0.005	< 0.001
Carbon tetrachloride	56-23-5	< 0.001	<0.000
Chlorobenzene	108-90-7	< 0.001	< 0.000
Chlorodibromomethane	124-48-1	< 0.001	< 0.000
Chloroethane	75-00-3	< 0.001	<0.000
Chloroform	67-66-3	< 0.005	< 0.001
Chloromethane	74-87-3	< 0.001	< 0.000
cis-1,2-Dichloroethene	156-59-2	< 0.001	< 0.000
cis-1,3-Dichloropropene	10061-01-5	< 0.001	< 0.000
Di-isopropyl ether	108-20-3	< 0.001	< 0.000
Dibromomethane	74-95-3	<0.001	<0.000
Dichlorodifluoromethane	75-71-8	< 0.005	<0.001
Ethylbenzene	100-41-4	< 0.001	< 0.000
Hexachloro-1,3-butadiene	87-68-3	< 0.001	< 0.000
Isopropylbenzene	98-82-8	< 0.001	< 0.000
Methyl tert-butyl ether	1634-04-4	< 0.001	< 0.000
Methylene Chloride	75-09-2	< 0.005	< 0.001
n-Butylbenzene	104-51-8	< 0.001	< 0.000
n-Propylbenzene	103-65-1	< 0.001	< 0.000
Naphthalene	91-20-3	< 0.005	< 0.001
p-Isopropyltoluene	99-87-6	< 0.001	< 0.000
sec-Butylbenzene	135-98-8	< 0.001	< 0.000
Styrene	100-42-5	< 0.001	< 0.000
tert-Butylbenzene	98-06-6	< 0.001	< 0.000
Tetrachloroethene	127-18-4	< 0.001	< 0.000
Toluene	108-88-3	< 0.005	< 0.001
trans-1,2-Dichloroethene	156-60-5	< 0.001	< 0.000
trans-1,3-Dichloropropene	10061-02-6	< 0.001	< 0.000
Trichloroethene	79-01-6	< 0.001	< 0.000
Trichlorofluoromethane	75-69-4	< 0.005	< 0.001
Vinyl chloride	75-01-4	<0.001	<0.000
Xylenes, Total	1330-20-7	< 0.003	< 0.001

Quality Control Summary for client sample(s) MW-1S, MW-2S, MW-3S, MW-4S

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366 Analytic Batch: WG391933 L372815

EPA ID: TN00003

Method Blank

1,1,1,2-Tetrachloroethane630-20-6<0.001	Analyte	CAS	PQL	MDL
1,1,1-Trichlorothane71-55-6 <0.001 <0.0003 1,1,2-Trichlorothane79-34-5 <0.001 <0.0003 1,1,2-Trichlorothane79-00-5 <0.001 <0.0003 1,1,2-Trichlorothane75-34-3 <0.001 <0.0003 1,1-Dichlorothane75-34-3 <0.001 <0.0003 1,1-Dichlorothane75-35-4 <0.001 <0.0003 1,1-Dichlorothane75-35-4 <0.001 <0.0003 1,1-Dichloroptopene563-58-6 <0.001 <0.0003 1,2,3-Trichloroptopane96-18-4 <0.001 <0.0003 1,2,4-Trichlorobenzene87-61-6 <0.001 <0.0003 1,2,4-Trimethylbenzene526-73-8 <0.001 <0.0003 1,2,4-Trimethylbenzene95-63-6 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-12-8 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-50-1 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane95-50-1 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichloropopane78-87-5 <0.001 <0.0003 1,3-5-Trimethylbenzene108-67-8 <0.001 <0.0003 1,3-Dichloropropane542-28-9 <0.001 <0.0003 1,3-Dichloroponane142-28-9 <0.001 <0.0003 1,3-Dichloroponane542-0-7 <0.001 <0.0003 2,2-Dichloroponane542-0-7 <0.001 <0.0003 2,2-Dichloroponane542-0-7 <0.001 <td></td> <td></td> <td></td> <td>0.0000</td>				0.0000
1,1,2,2-Tricrachloroethane79-34-5<0.001<0.00031,1,2-Trichloroethane79-34-5<0.001				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
1,1,2-Trichloroethane10.6310.001 < 0.0003 1,1,2-Trichloro-1,2,2-trifluoroethane75-34-3 < 0.001 < 0.0003 1,1-Dichloroethane75-35-4 < 0.001 < 0.0003 1,1-Dichloroptopene563-58-6 < 0.001 < 0.0003 1,2,3-Trichlorobenzene87-61-6 < 0.001 < 0.0003 1,2,3-Trichloroptopane96-18-4 < 0.001 < 0.0003 1,2,3-Trinethylbenzene526-73-8 < 0.001 < 0.0003 1,2,4-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trimethylbenzene95-63-6 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane96-12-8 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane95-50-1 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane95-50-1 < 0.001 < 0.0003 1,2-Diblorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichloroptopane78-87-5 < 0.001 < 0.0003 1,3-Dichloroptopane78-87-5 < 0.001 < 0.0003 1,3-Dichloroptopane142-28-9 < 0.001 < 0.0003 1,3-Dichloroptopane142-28-9 < 0.001 < 0.0003 1,4-Dichloroptopane594-20-7 < 0.001 < 0.0003 2,2-Dichloroptopane594-20-7 < 0.001 < 0.0003	1,1,2,2-Tetrachloroethane	79-34-5		
1,1-Dichlorothane75-34-3 < 0.001 < 0.0003 1,1-Dichlorothane75-35-4 < 0.001 < 0.0003 1,1-Dichloroptopene563-58-6 < 0.001 < 0.0003 1,2,3-Trichlorobenzene87-61-6 < 0.001 < 0.0003 1,2,3-Trichloroptopane96-18-4 < 0.001 < 0.0003 1,2,3-Trinethylbenzene526-73-8 < 0.001 < 0.0003 1,2,4-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trichlorobenzene95-63-6 < 0.001 < 0.0003 1,2-Dibromo-3-Chloroptopane96-12-8 < 0.001 < 0.0003 1,2-Dibromethane106-93-4 < 0.001 < 0.0003 1,2-Dichlorobenzene95-50-1 < 0.001 < 0.0003 1,2-Dichloroptopane78-87-5 < 0.001 < 0.0003 1,3-Dichloroptopane78-87-5 < 0.001 < 0.0003 1,3-Dichloroptopane142-28-9 < 0.001 < 0.0003 1,3-Dichloroptopane594-20-7 < 0.001 < 0.0003 2,2-Dichloroptopane594-20-7 < 0.001 < 0.0003 2,2-Dichloroptopane<				
1,1-Dichlorobenkine75-35-4 < 0.001 < 0.0003 1,1-Dichloroptopene563-58-6 < 0.001 < 0.0003 1,2,3-Trichlorobenzene87-61-6 < 0.001 < 0.0003 1,2,3-Trichloroptopane96-18-4 < 0.001 < 0.0003 1,2,3-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trichlorobenzene120-82-1 < 0.001 < 0.0003 1,2,4-Trimethylbenzene95-63-6 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane96-12-8 < 0.001 < 0.0003 1,2-Dibromo-3-Chloropropane95-50-1 < 0.001 < 0.0003 1,2-Dichlorobenzene107-06-2 < 0.001 < 0.0003 1,2-Dichloroptopane78-87-5 < 0.001 < 0.0003 1,3-Dichloroppone78-87-5 < 0.001 < 0.0003 1,3-Dichloroptopane142-28-9 < 0.001 < 0.0003 1,3-Dichloroptopane142-28-9 < 0.001 < 0.0003 1,3-Dichloroptopane594-20-7 < 0.001 < 0.0003 2-Dichloroptopane594-20-7 < 0.001 < 0.0003 2-Dichloroptopane594-20-7 < 0.001 < 0.0003 2-Chlorotoluene95-49-8 < 0.001 < 0.0003 2-Chlorotoluene106-43-4 < 0.001 < 0.0003 2-Chlorotoluene106-43-4 < 0.001 < 0.0003 4-Chlorotoluene106-43-4 < 0.001 < 0.0003 Acctone67-64-1 < 0.050 < 0.0165 Acrolein107-02-8 < 0.0	1,1,2-Trichloro-1,2,2-trifluoroethan	ne 76-13-1		
1,1-Dichloropropene563-58-6<0.001<0.00031,2,3-Trichloropenzene $87-61-6$ <0.001	1,1-Dichloroethane	75-34-3		
1,2,3-Trichloropropane87-61-6<0.001<0.00031,2,3-Trichloropropane96-18-4<0.001	1,1-Dichloroethene	75-35-4		
1,2,3-Trichloroberhene96-18-4<0.001<0.00031,2,3-Trimethylbenzene $526-73-8$ <0.001	1,1-Dichloropropene	563-58-6	<0.001	
1,2,3-Trimethylbenzene526-73-8 <0.001 <0.0003 1,2,4-Trichlorobenzene120-82-1 <0.001 <0.0003 1,2,4-Trimethylbenzene95-63-6 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-12-8 <0.001 <0.0003 1,2-Dibromoethane106-93-4 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichloropthane107-06-2 <0.001 <0.0003 1,2-Dichloropthane78-87-5 <0.001 <0.0003 1,3-Dichloropthane108-67-8 <0.001 <0.0003 1,3-Dichloropthane142-28-9 <0.001 <0.0003 1,3-Dichloropthane142-28-9 <0.001 <0.0003 1,3-Dichloropthane594-20-7 <0.001 <0.0003 1,4-Dichloropthane594-20-7 <0.001 <0.0003 2,2-Dichloropthane594-20-7 <0.001 <0.0003 2,2-Dichloropthane594-20-7 <0.001 <0.0003 2,2-Dichloropthane594-20-7 <0.001 <0.0003 2,2-Dichloropthyl vinyl ether110-75-8 <0.001 <0.0003 2-Chlorotoluene95-49-8 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0033 4-Chlorotoluene106-43-4 <0.001 <0.0033 4-Chlorotoluene106-43-4 <0.001 <0.0033 4-Chlorotoluene106-43-4 <0.001 <0.0033	1,2,3-Trichlorobenzene	87-61-6		
1,2,4-Trichlorobenzene120-82-1<0.001<0.00031,2,4-Trinethylbenzene95-63-6<0.001	1,2,3-Trichloropropane	96-18-4	<0.001	
1,2,4-Trimethylbenzene95-63-6 <0.001 <0.0003 1,2-Dibromo-3-Chloropropane96-12-8 <0.005 <0.0016 1,2-Dibromoethane106-93-4 <0.001 <0.0003 1,2-Dichlorobenzene95-50-1 <0.001 <0.0003 1,2-Dichlorocthane107-06-2 <0.001 <0.0003 1,2-Dichloropropane78-87-5 <0.001 <0.0003 1,2-Dichloropropane78-87-5 <0.001 <0.0003 1,3,5-Trimethylbenzene108-67-8 <0.001 <0.0003 1,3-Dichlorobenzene541-73-1 <0.001 <0.0003 1,3-Dichloropropane142-28-9 <0.001 <0.0003 1,4-Dichlorobenzene106-46-7 <0.001 <0.0003 2,2-Dichloropropane594-20-7 <0.001 <0.0003 2,Chloroethyl vinyl ether110-75-8 <0.001 <0.0003 2-Chlorotoluene95-49-8 <0.001 <0.0003 4-Chlorotoluene106-43-4 <0.001 <0.0033 4-Chlorotoluene106-43-4 <0.000 <0.0033 4-Chlorotoluene106-72-8 <0.050 <0.0165 Acetone67-64-1 <0.050 <0.0165	1,2,3-Trimethylbenzene	526-73-8	<0.001	
1,2,4-Trimethylbenzene95-63-6<0.001<0.0003 $1,2$ -Dibromo-3-Chloropropane96-12-8<0.005	1,2,4-Trichlorobenzene	120-82-1	<0.001	< 0.0003
1,2-Dibromo-3-Chloropropane96-12-8<0.005<0.00161,2-Dibromoethane106-93-4<0.001	1,2,4-Trimethylbenzene	95-63-6	<0.001	
1,2-Dibromoethane106-93-4<0.001<0.00031,2-Dichlorobenzene95-50-1<0.001		96-12-8	< 0.005	< 0.0016
1,2-Dichlorobenzene95-50-1<0.001<0.00031,2-Dichloroethane107-06-2<0.001	,	106-93-4	<0.001	< 0.0003
1,2-Dichloroethane107-06-2<0.001<0.00031,2-Dichloropropane78-87-5<0.001		95-50-1	<0.001	< 0.0003
1,2-Dichloropropane $78-87-5$ <0.001 <0.0003 1,3,5-Trimethylbenzene108-67-8 <0.001 <0.0003 1,3-Dichlorobenzene $541-73-1$ <0.001 <0.0003 1,3-Dichloropropane142-28-9 <0.001 <0.0003 1,4-Dichlorobenzene106-46-7 <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0003 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.010 <0.0033 Acrylonitrile $107-13-1$ <0.010 <0.0033		107-06-2	<0.001	< 0.0003
1,3,5-Trimethylbenzene $108-67-8$ <0.001 <0.0003 $1,3$ -Dichlorobenzene $541-73-1$ <0.001 <0.0003 $1,3$ -Dichloropropane $142-28-9$ <0.001 <0.0003 $1,4$ -Dichlorobenzene $106-46-7$ <0.001 <0.0003 $2,2$ -Dichloropropane $594-20-7$ <0.001 <0.0003 2 -Butanone (MEK) $78-93-3$ <0.010 <0.0003 2 -Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2 -Chlorotoluene $95-49-8$ <0.001 <0.0003 4 -Chlorotoluene $106-43-4$ <0.001 <0.0003 4 -Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 $Acetone$ $67-64-1$ <0.050 <0.0165 $Acrolein$ $107-02-8$ <0.050 <0.0165 $Acrylonitrile$ $107-13-1$ <0.010 <0.0033		78-87-5	<0.001	< 0.0003
1,3-Dichlorobenzene $541-73-1$ <0.001 <0.0003 1,3-Dichloropropane $142-28-9$ <0.001 <0.0003 1,4-Dichlorobenzene $106-46-7$ <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0003 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033		108-67-8	<0.001	< 0.0003
1,3-Dichloropropane $142-28-9$ <0.001 <0.0003 1,4-Dichlorobenzene $106-46-7$ <0.001 <0.0003 2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033		541-73-1	<0.001	< 0.0003
1,4-Dichlorobenzene106-46-7<0.001<0.00032,2-Dichloropropane $594-20-7$ <0.001		142-28-9	<0.001	< 0.0003
2,2-Dichloropropane $594-20-7$ <0.001 <0.0003 2-Butanone (MEK) $78-93-3$ <0.010 <0.0033 2-Chloroethyl vinyl ether $110-75-8$ <0.001 <0.0003 2-Chlorotoluene $95-49-8$ <0.001 <0.0003 4-Chlorotoluene $106-43-4$ <0.001 <0.0003 4-Methyl-2-pentanone (MIBK) $108-10-1$ <0.010 <0.0033 Acetone $67-64-1$ <0.050 <0.0165 Acrolein $107-02-8$ <0.050 <0.0165 Acrylonitrile $107-13-1$ <0.010 <0.0033	· · · ·	106-46-7	<0.001	< 0.0003
2-Butanone (MEK)78-93-3<0.010<0.00332-Chloroethyl vinyl ether110-75-8<0.001		594-20-7	< 0.001	< 0.0003
2-Chloroethyl vinyl ether110-75-8<0.001<0.00032-Chlorotoluene95-49-8<0.001		78-93-3	<0.010	< 0.0033
2-Chlorotoluene95-49-8<0.001<0.00034-Chlorotoluene106-43-4<0.001		110-75-8	<0.001	< 0.0003
4-Chlorotoluene106-43-4<0.001<0.00034-Methyl-2-pentanone (MIBK)108-10-1<0.010		95-49-8	< 0.001	< 0.0003
4-Methyl-2-pentanone (MIBK)108-10-1<0.010<0.0033Acetone67-64-1<0.050		106-43-4	< 0.001	< 0.0003
Acetone67-64-1<0.050<0.0165Acrolein107-02-8<0.050		108-10-1	<0.010	< 0.0033
Acrylonitrile 107-13-1 <0.010 <0.0033		67-64-1	< 0.050	< 0.0165
Acrylonitrile 107-13-1 <0.010 <0.0033	Acrolein	107-02-8	<0.050	< 0.0165
		107-13-1	<0.010	< 0.0033
	Benzene	71-43-2	<0.001	< 0.0003
Bromobenzene 108-86-1 <0.001 <0.0003			< 0.001	< 0.0003
Bromodichloromethane 75-27-4 <0.001 <0.0003		75-27-4	<0.001	< 0.0003

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B *atrix:* Water - mg/L

L372815

Matrix: Water - mg/L Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L372815 Sample Number:L372815-05, -07, -08 Sample Date:10/31/2008 Extraction Date:11/3/2008 Analysis Date:11/3/2008 9:49:00 PM Instrument ID:VOCGCMS5 Analyst:366 Analytic Batch:WG391933

EPA ID: TN00003

Me			
Analyte	CAS	PQL	MDL
Bromoform	75-25-2	<0.001	< 0.000
Bromomethane	74-83-9	< 0.005	< 0.001
Carbon tetrachloride	56-23-5	< 0.001	< 0.000
Chlorobenzene	108-90-7	< 0.001	<0.000
Chlorodibromomethane	124-48-1	< 0.001	<0.000
Chloroethane	75-00-3	< 0.001	< 0.000
Chloroform	67-66-3	< 0.005	< 0.001
Chloromethane	74-87-3	< 0.001	<0.000
cis-1,2-Dichloroethene	156-59-2	< 0.001	< 0.000
cis-1,3-Dichloropropene	10061-01-5	< 0.001	< 0.000
Di-isopropyl ether	108-20-3	< 0.001	<0.000
Dibromomethane	74-95-3	< 0.001	<0.000
Dichlorodifluoromethane	75-71-8	< 0.005	< 0.001
Ethylbenzene	100-41-4	< 0.001	< 0.000
Hexachloro-1,3-butadiene	87-68-3	< 0.001	<0.000
Isopropylbenzene	98-82-8	< 0.001	<0.000
Methyl tert-butyl ether	1634-04-4	< 0.001	< 0.000
Methylene Chloride	75-09-2	< 0.005	< 0.00
n-Butylbenzene	104-51-8	< 0.001	<0.000
n-Propylbenzene	103-65-1	< 0.001	<0.000
Naphthalene	91-20-3	< 0.005	< 0.00
p-Isopropyltoluene	99-87-6	< 0.001	< 0.000
sec-Butylbenzene	135-98-8	< 0.001	< 0.000
Styrene	100-42-5	< 0.001	<0.000
tert-Butylbenzene	98-06-6	< 0.001	<0.00
Tetrachloroethene	127-18-4	< 0.001	<0.00
Toluene	108-88-3	< 0.005	< 0.00
trans-1,2-Dichloroethene	156-60-5	< 0.001	< 0.00
trans-1,3-Dichloropropene	10061-02-6	< 0.001	< 0.00
Trichloroethene	79-01-6	< 0.001	<0.00
Trichlorofluoromethane	75-69-4	< 0.005	< 0.00
Vinyl chloride	75-01-4	< 0.001	<0.000
Xylenes, Total	1330-20-7	< 0.003	<0.00

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815

Sample Number:L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7 Analyst:156 Analytic Batch:WG392107

S.

L372815

EPA ID: TN00003

Metl	nod Blank		
Analyte	CAS	PQL	MDL
1,1,1,2-Tetrachloroethane	630-20-6	<0.001	< 0.0003
1,1,1-Trichloroethane	71-55-6	< 0.001	< 0.0003
1,1,2,2-Tetrachloroethane	79-34-5	< 0.001	< 0.0003
1,1,2-Trichloroethane	79-00-5	< 0.001	< 0.0003
1,1,2-Trichloro-1,2,2-trifluoroetha	me 76-13-1	< 0.001	< 0.0003
1,1-Dichloroethane	75-34-3	< 0.001	< 0.0003
1,1-Dichloroethene	75-35-4	< 0.001	< 0.0003
1,1-Dichloropropene	563-58-6	< 0.001	< 0.0003
1,2,3-Trichlorobenzene	87-61-6	< 0.001	< 0.0003
1,2,3-Trichloropropane	96-18-4	< 0.001	< 0.0003
1,2,3-Trimethylbenzene	526-73-8	< 0.001	< 0.0003
1,2,4-Trichlorobenzene	120-82-1	< 0.001	< 0.0003
1,2,4-Trimethylbenzene	95-63-6	< 0.001	< 0.0003
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.005	< 0.0016
1,2-Dibromoethane	106-93-4	< 0.001	< 0.0003
1,2-Dichlorobenzene	95-50-1	< 0.001	< 0.0003
1,2-Dichloroethane	107-06-2	< 0.001	< 0.0003
1,2-Dichloropropane	78-87-5	< 0.001	< 0.0003
1,3,5-Trimethylbenzene	108-67-8	< 0.001	< 0.0003
1,3-Dichlorobenzene	541-73-1	< 0.001	< 0.0003
1,3-Dichloropropane	142-28-9	< 0.001	< 0.0003
1,4-Dichlorobenzene	106-46-7	< 0.001	< 0.0003
2,2-Dichloropropane	594-20-7	< 0.001	< 0.0003
2-Butanone (MEK)	78-93-3	< 0.010	< 0.0033
2-Chloroethyl vinyl ether	110-75-8	< 0.001	< 0.0003
2-Chlorotoluene	95-49-8	< 0.001	< 0.0003
4-Chlorotoluene	106-43-4	< 0.001	< 0.0003
4-Methyl-2-pentanone (MIBK)	108-10-1	< 0.010	< 0.0033
Acetone	67-64-1	< 0.050	< 0.0165
Acrolein	107-02-8	< 0.050	<0.0165
Acrylonitrile	107-13-1	< 0.010	< 0.0033
Benzene	71-43-2	< 0.001	< 0.0003
Bromobenzene	108-86-1	< 0.001	< 0.0003
Bromodichloromethane	75-27-4	< 0.001	< 0.0003

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number:L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7

Analyst:156 Analytic Batch:WG392107

EPA II	D: TN	100003
--------	-------	--------

L372815

Me			
Analyte	CAS	PQL	MDL
Bromoform	75-25-2	< 0.001	< 0.000
Bromomethane	74-83-9	< 0.005	< 0.001
Carbon tetrachloride	56-23-5	< 0.001	< 0.000
Chlorobenzene	108-90-7	< 0.001	< 0.000
Chlorodibromomethane	124-48-1	< 0.001	< 0.000
Chloroethane	75-00-3	< 0.001	< 0.000
Chloroform	67-66-3	< 0.005	< 0.001
Chloromethane	74-87-3	< 0.001	< 0.000
cis-1,2-Dichloroethene	156-59-2	< 0.001	< 0.000
cis-1,3-Dichloropropene	10061-01-5	< 0.001	< 0.000
Di-isopropyl ether	108-20-3	< 0.001	< 0.000
Dibromomethane	74-95-3	< 0.001	< 0.000
Dichlorodifluoromethane	75-71-8	< 0.005	< 0.001
Ethylbenzene	100-41-4	< 0.001	< 0.000
Hexachloro-1,3-butadiene	87-68-3	< 0.001	< 0.000
Isopropylbenzene	98-82-8	< 0.001	< 0.000
Methyl tert-butyl ether	1634-04-4	< 0.001	<0.000
Methylene Chloride	75-09-2	< 0.005	< 0.001
n-Butylbenzene	104-51-8	< 0.001	<0.000
n-Propylbenzene	103-65-1	< 0.001	< 0.000
Naphthalene	91-20-3	< 0.005	<0.001
p-Isopropyltoluene	99-87-6	< 0.001	<0.000
sec-Butylbenzene	135-98-8	< 0.001	<0.000
Styrene	100-42-5	< 0.001	<0.000
tert-Butylbenzene	98-06-6	< 0.001	< 0.000
Tetrachloroethene	127-18-4	< 0.001	<0.000
Toluene	108-88-3	< 0.005	<0.002
trans-1,2-Dichloroethene	156-60-5	< 0.001	<0.000
trans-1,3-Dichloropropene	10061-02-6	< 0.001	<0.000
Trichloroethene	79-01-6	< 0.001	< 0.000
Trichlorofluoromethane	75-69-4	< 0.005	< 0.00
Vinyl chloride	75-01-4	< 0.001	< 0.000
Xylenes, Total	1330-20-7	< 0.003	< 0.001

Quality Control Summary for client sample(s) MW-1D

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits Qualifie	<u>rs</u>
1,1,1,2-Tetrachloroethane	0.050	0.052	105	75 - 134	
1,1,1-Trichloroethane	0.050	0.049	97.6	67 - 137	
1,1,2,2-Tetrachloroethane	0.050	0.045	90.8	72 - 128	
1,1,2-Trichloroethane	0.050	0.047	95.0	79 - 123	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.062	125	51 - 149	
1,1-Dichloroethane	0.050	0.052	104	67 - 133	
1,1-Dichloroethene	0.050	0.047	94.3	60 - 130	
1,1-Dichloropropene	0.050	0.049	98.3	68 - 132	
1,2,3-Trichlorobenzene	0.050	0.049	97.7	63 - 138	
1,2,3-Trichloropropane	0.050	0.050	100	68 - 130	
1,2,3-Trimethylbenzene	0.050	0.047	94.6	70 - 127	
1,2,4-Trichlorobenzene	0.050	0.051	103	65 - 137	
1,2,4-Trimethylbenzene	0.050	0.049	98.9	72 - 135	
1,2-Dibromo-3-Chloropropane	0.050	0.052	104	55 - 134	
1,2-Dibromoethane	0.050	0.049	97.4	75 - 126	
1,2-Dichlorobenzene	0.050	0.049	98.6	75 - 122	
1,2-Dichloroethane	0.050	0.050	99.6	63 - 137	
1,2-Dichloropropane	0.050	0.048	95.3	74 - 122	
1,3,5-Trimethylbenzene	0.050	0.050	101	73 - 134	
1,3-Dichlorobenzene	0.050	0.051	102	73 - 131	
1,3-Dichloropropane	0.050	0.048	95.8	77 - 119	
1,4-Dichlorobenzene	0.050	0.049	97.5	70 - 121	
2,2-Dichloropropane	0.050	0.049	97.2	46 - 151	
2-Butanone (MEK)	0.250	0.276	110	53 - 132	
2-Chloroethyl vinyl ether	0.250	0.049	19.5	0 - 171	
2-Chlorotoluene	0.050	0.049	97.2	74 - 128	
4-Chlorotoluene	0.050	0.048	96.8	74 - 130	
4-Methyl-2-pentanone (MIBK)	0.250	0.266	106	60 - 142	
Acetone	0.250	0.286	115	48 - 134	
Acrolein	0.250	0.488	195	6 - 182 J4	
Acrylonitrile	0.250	0.281	112	60 - 140	
Benzene	0.050	0.050	99.1	67 - 126	
Bromobenzene	0.050	0.045	90.2	76 - 123	
Bromodichloromethane	0.050	0.046	91.7	68 - 133	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

......

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Bromoform	0.050	0.050	100	60 - 139	
Bromomethane	0.050	0.056	111	45 - 175	
Carbon tetrachloride	0.050	0.051	103	64 - 141	
Chlorobenzene	0.050	0.050	99.8	77 - 125	
Chlorodibromomethane	0.050	0.051	102	73 - 138	
Chloroethane	0.050	0.059	118	49 - 155	
Chloroform	0.050	0.049	99.0	66 - 126	
Chloromethane	0.050	0.043	85.7	45 - 152	
cis-1,2-Dichloroethene	0.050	0.050	100	72 - 128	
cis-1,3-Dichloropropene	0.050	0.050	99.5	73 - 131	х.
Di-isopropyl ether	0.050	0.050	99.8	63 - 139	
Dibromomethane	0.050	0.047	93.8	73 - 125	
Dichlorodifluoromethane	0.050	0.046	91.8	39 - 189	
Ethylbenzene	0.050	0.050	99.5	76 - 129	
Hexachloro-1,3-butadiene	0.050	0.052	105	67 - 135	
Isopropylbenzene	0.050	0.051	102	73 - 132	
Methyl tert-butyl ether	0.050	0.049	97.8	51 - 142	
Methylene Chloride	0.050	0.046	92.9	64 - 125	
n-Butylbenzene	0.050	0.048	96.2	63 - 142	
n-Propylbenzene	0.050	0.049	98.5	71 - 132	
Naphthalene	0.050	0.043	85.1	56 - 145	
p-Isopropyltoluene	0.050	0.051	102	68 - 138	
sec-Butylbenzene	0.050	0.051	101	70 - 135	
Styrene	0.050	0.052	103	78 - 130	
tert-Butylbenzene	0.050	0.050	101	72 - 134	
Tetrachloroethene	0.050	0.050	100	67 - 135	
Toluene	0.050	0.047	94.2	72 - 122	
trans-1,2-Dichloroethene	0.050	0.048	96.5	67 - 129	
trans-1,3-Dichloropropene	0.050	0.049	97.7	66 - 137	
Trichloroethene	0.050	0.051	101	74 - 126	
Trichlorofluoromethane	0.050	0.050	101	54 - 156	
Vinyl chloride	0.050	0.049	97.2	55 - 153	
Xylenes, Total	0.150	0.150	99.7	75 - 128	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
That yo					
1,1,1,2-Tetrachloroethane	0.050	0.049	98.9	75 - 134	
1,1,1-Trichloroethane	0.050	0.045	91.0	67 - 137	
1,1,2,2-Tetrachloroethane	0.050	0.048	96.6	72 - 128	
1,1,2-Trichloroethane	0.050	0.047	94.2	79 - 123	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.051	103	51 - 149	
1,1-Dichloroethane	0.050	0.049	98.1	67 - 133	
1,1-Dichloroethene	0.050	0.044	88.4	60 - 130	
1,1-Dichloropropene	0.050	0.047	94.4	68 - 132	
1,2,3-Trichlorobenzene	0.050	0.051	103	63 - 138	
1,2,3-Trichloropropane	0.050	0.055	110	68 - 130	
1,2,3-Trimethylbenzene	0.050	0.045	90.2	70 - 127	
1,2,4-Trichlorobenzene	0.050	0.052	104	65 - 137	
1,2,4-Trimethylbenzene	0.050	0.046	92.8	72 - 135	
1,2-Dibromo-3-Chloropropane	0.050	0.062	123	55 - 134	
1,2-Dibromoethane	0.050	0.049	98.7	75 - 126	
1,2-Dichlorobenzene	0.050	0.048	96.9	75 - 122	
1,2-Dichloroethane	0.050	0.050	99.5	63 - 137	
1,2-Dichloropropane	0.050	0.047	94.0	74 - 122	
1,3,5-Trimethylbenzene	0.050	0.047	94.2	73 - 134	
1,3-Dichlorobenzene	0.050	0.049	98.1	73 - 131	
1,3-Dichloropropane	0.050	0.048	96.7	77 - 119	
1,4-Dichlorobenzene	0.050	0.047	94.7	70 - 121	
2,2-Dichloropropane	0.050	0.046	92.9	46 - 151	
2-Butanone (MEK)	0.250	0.327	131	53 - 132	
2-Chloroethyl vinyl ether	0.250	0.075	30.0	0 - 171	
2-Chlorotoluene	0.050	0.046	92.1	74 - 128	
4-Chlorotoluene	0.050	0.045	90.3	74 - 130	
4-Methyl-2-pentanone (MIBK)	0.250	0.315	126	60 - 142	
Acetone	0.250	0.321	129	48 - 134	
Acrolein	0.250	0.312	125	6 - 182	
Acrylonitrile	0.250	0.310	124	60 - 140	
Benzene	0.050	0.048	95.4	67 - 126	
Bromobenzene	0.050	0.044	88.6	76 - 123	
Bromodichloromethane	0.050	0.044	88.0	68 - 133	

Environmental Science Corporation Quality Control Summary Envirotest Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L

Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737

EPA ID: TN00003

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Bromoform	0.050	0.052	104	60 - 139	
Bromomethane	0.050	0.057	113	45 - 175	
Carbon tetrachloride	0.050	0.049	97.3	64 - 141	
Chlorobenzene	0.050	0.048	95.6	77 - 125	
Chlorodibromomethane	0.050	0.050	99.0	73 - 138	
Chloroethane	0.050	0.058	117	49 - 155	
Chloroform	0.050	0.047	93.5	66 - 126	
Chloromethane	0.050	0.045	89.7	45 - 152	
cis-1,2-Dichloroethene	0.050	0.048	96.3	72 - 128	
cis-1,3-Dichloropropene	0.050	0.049	97.4	73 - 131	
Di-isopropyl ether	0.050	0.048	96.0	63 - 139	
Dibromomethane	0.050	0.048	96.0	73 - 125	
Dichlorodifluoromethane	0.050	0.050	101	39 - 189	
Ethylbenzene	0.050	0.048	95.9	76 - 129	
Hexachloro-1,3-butadiene	0.050	0.049	98.4	67 - 135	
Isopropylbenzene	0.050	0.047	94.4	73 - 132	
Methyl tert-butyl ether	0.050	0.051	102	51 - 142	
Methylene Chloride	0.050	0.048	96.0	64 - 125	
n-Butylbenzene	0.050	0.045	90.4	63 - 142	
n-Propylbenzene	0.050	0.047	93.1	71 - 132	
Naphthalene	0.050	0.048	96.7	56 - 145	
p-Isopropyltoluene	0.050	0.047	93.0	68 - 138	
sec-Butylbenzene	0.050	0.047	93.2	70 - 135	
Styrene	0.050	0.049	97.4	78 - 130	
tert-Butylbenzene	0.050	0.048	96.2	72 - 134	
Tetrachloroethene	0.050	0.049	97.8	67 - 135	
Toluene	0.050	0.046	91.1	72 - 122	
trans-1,2-Dichloroethene	0.050	0.048	95.9	67 - 129	
trans-1,3-Dichloropropene	0.050	0.049	98.4	66 - 137	
Trichloroethene	0.050	0.049	97.8	74 - 126	
Trichlorofluoromethane	0.050	0.051	103	54 - 156	
Vinyl chloride	0.050	0.050	99.9	55 - 153	
Xylenes, Total	0.150	0.142	94.4	75 - 128	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B

L372815

Matrix: Water - mg/L Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L372815 Sample Number:L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366 Analytic Batch: WG391933

EPA ID: TN00003

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits Qua	lifiers
1,1,1,2-Tetrachloroethane	0.050	0.051	102	75 - 134	
1,1,1-Trichloroethane	0.050	0.052	104	67 - 137	
1,1,2,2-Tetrachloroethane	0.050	0.052	103	72 - 128	
1,1,2-Trichloroethane	0.050	0.051	102	79 - 123	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.053	106	51 - 149	
1,1-Dichloroethane	0.050	0.051	101	67 - 133	
1,1-Dichloroethene	0.050	0.054	108	60 - 130	
1,1-Dichloropropene	0.050	0.051	102	68 - 132	
1,2,3-Trichlorobenzene	0.050	0.051	101	63 - 138	
1,2,3-Trichloropropane	0.050	0.055	110	68 - 130	
1,2,3-Trimethylbenzene	0.050	0.050	100	70 - 127	
1,2,4-Trichlorobenzene	0.050	0.052	103	65 - 137	
1,2,4-Trimethylbenzene	0.050	0.049	99.0	72 - 135	
1,2-Dibromo-3-Chloropropane	0.050	0.055	110	55 - 134	
1,2-Dibromoethane	0.050	0.051	103	75 - 126	
1,2-Dichlorobenzene	0.050	0.050	99.9	75 - 122	
1,2-Dichloroethane	0.050	0.050	99.3	63 - 137	
1,2-Dichloropropane	0.050	0.052	105	74 - 122	
1,3,5-Trimethylbenzene	0.050	0.050	100	73 - 134	
1,3-Dichlorobenzene	0.050	0.048	96.6	73 - 131	
1,3-Dichloropropane	0.050	0.049	98.5	77 - 119	
1,4-Dichlorobenzene	0.050	0.049	97.4	70 - 121	
2,2-Dichloropropane	0.050	0.050	100	46 - 151	
2-Butanone (MEK)	0.250	0.263	105	53 - 132	
2-Chloroethyl vinyl ether	0.250	0.261	104	0 - 171	
2-Chlorotoluene	0.050	0.049	98.4	74 - 128	
4-Chlorotoluene	0.050	0.050	99.2	74 - 130	
4-Methyl-2-pentanone (MIBK)	0.250	0.264	106	60 - 142	
Acetone	0.250	0.262	105	48 - 134	
Acrolein	0.250	0.202	81.0	6 - 182	
Acrylonitrile	0.250	0.263	105	60 - 140	
Benzene	0.050	0.049	97.9	67 - 126	
Bromobenzene	0.050	0.049	97.3	76 - 123	
Bromodichloromethane	0.050	0.051	101	68 - 133	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366 Analytic Batch: WG391933

. Y

L372815

EPA ID: TN00003

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Bromoform	0.050	0.055	110	60 - 139	
Bromomethane	0.050	0.064	127	45 - 175	
Carbon tetrachloride	0.050	0.050	101	64 - 141	
Chlorobenzene	0.050	0.049	97.8	77 - 125	
Chlorodibromomethane	0.050	0.053	105	73 - 138	
Chloroethane	0.050	0.052	104	49 - 155	
Chloroform	0.050	0.050	99.0	66 - 126	
Chloromethane	0.050	0.051	102	45 - 152	
cis-1,2-Dichloroethene	0.050	0.051	102	72 - 128	
cis-1,3-Dichloropropene	0.050	0.051	99.8	73 - 131	
Di-isopropyl ether	0.050	0.050	100	63 - 139	
Dibromomethane	0.050	0.050	101	73 - 125	
Dichlorodifluoromethane	0.050	0.050	101	39 - 189	
	0.050	0.054	100	76 - 129	
Ethylbenzene Hexachloro-1,3-butadiene	0.050	0.050	99.1	67 - 135	
Isopropylbenzene	0.050	0.050	100	73 - 132	
Methyl tert-butyl ether	0.050	0.050	100	51 - 142	
Methylene Chloride	0.050	0.048	95.5	64 - 125	
	0.050	0.040	103	63 - 142	
n-Butylbenzene	0.050	0.051	99.9	71 - 132	
n-Propylbenzene	0.050	0.050	107	56 - 145	
Naphthalene	0.050	0.054	107	68 - 138	
p-Isopropyltoluene	0.050	0.051	99.1	70 - 135	
sec-Butylbenzene	0.050	0.053	105	78 - 130	
Styrene	0.050	0.033	98.5	72 - 134	
tert-Butylbenzene	0.050	0.049	97.8	67 - 135	
Tetrachloroethene	0.050	0.049	97.3	72 - 122	
Toluene	0.050	0.049	104	67 - 129	
trans-1,2-Dichloroethene	0.050	0.032	92.3	66 - 137	
trans-1,3-Dichloropropene		0.040	100	74 - 126	
Trichloroethene	0.050	0.050	105	54 - 156	
Trichlorofluoromethane	0.050	0.053	105	55 - 153	
Vinyl chloride	0.050		100	75 - 128	
Xylenes, Total	0.150	0.150	100	75 - 120	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5

Analyst:366

Analytic Batch:WG391933

EPA ID: TN00003

L372815

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
	0.050	0.040	07.2	75 - 134	
1,1,1,2-Tetrachloroethane	0.050	0.049	97.3	75 - 134 67 - 137	
1,1,1-Trichloroethane	0.050	0.049	97.2		
1,1,2,2-Tetrachloroethane	0.050	0.051	102	72 - 128	
1,1,2-Trichloroethane	0.050	0.049	98.1	79 - 123	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.048	96.7	51 - 149	
1,1-Dichloroethane	0.050	0.047	94.1	67 - 133	
1,1-Dichloroethene	0.050	0.049	98.1	60 - 130	
1,1-Dichloropropene	0.050	0.047	94.0	68 - 132	
1,2,3-Trichlorobenzene	0.050	0.049	97.4	63 - 138	
1,2,3-Trichloropropane	0.050	0.053	105	68 - 130	
1,2,3-Trimethylbenzene	0.050	0.047	94.7	70 - 127	
1,2,4-Trichlorobenzene	0.050	0.049	98.7	65 - 137	
1,2,4-Trimethylbenzene	0.050	0.049	97.0	72 - 135	
1,2-Dibromo-3-Chloropropane	0.050	0.053	107	55 - 134	
1,2-Dibromoethane	0.050	0.050	99.1	75 - 126	
1,2-Dichlorobenzene	0.050	0.047	94.7	75 - 122	
1,2-Dichloroethane	0.050	0.048	95.6	63 - 137	
1,2-Dichloropropane	0.050	0.053	105	74 - 122	
1,3,5-Trimethylbenzene	0.050	0.049	97.9	73 - 134	
1,3-Dichlorobenzene	0.050	0.048	95.1	73 - 131	
1,3-Dichloropropane	0.050	0.047	94.1	77 - 119	
1,4-Dichlorobenzene	0.050	0.045	90.9	70 - 121	
2,2-Dichloropropane	0.050	0.047	93.6	46 - 151	
2-Butanone (MEK)	0.250	0.250	100	53 - 132	
2-Chloroethyl vinyl ether	0.250	0.264	105	0 - 171	
2-Chlorotoluene	0.050	0.048	96.1	74 - 128	
4-Chlorotoluene	0.050	0.048	96.7	74 - 130	
4-Methyl-2-pentanone (MIBK)	0.250	0.262	105	60 - 142	
Acetone	0.250	0.248	99.2	48 - 134	
Acrolein	0.250	0.207	82.7	6 - 182	ж. Т
Acrylonitrile	0.250	0.252	101	60 - 140	
Benzene	0.050	0.046	91.2	67 - 126	
Bromobenzene	0.050	0.047	93.9	76 - 123	
Bromodichloromethane	0.050	0.047	96.5	68 - 133	
Bromoulchioromethane	0.050	0.040	70.5	00 155	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366

Analytic Batch:WG391933

L372815

EPA ID: TN00003

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Bromoform	0.050	0.054	109	60 - 139	
Bromomethane	0.050	0.059	118	45 - 175	
Carbon tetrachloride	0.050	0.047	94.8	64 - 141	
Chlorobenzene	0.050	0.047	93.6	77 - 125	
Chlorodibromomethane	0.050	0.050	101	73 - 138	
Chloroethane	0.050	0.048	95.6	49 - 155	
Chloroform	0.050	0.047	93.4	66 - 126	
Chloromethane	0.050	0.046	91.9	45 - 152	
cis-1,2-Dichloroethene	0.050	0.048	95.3	72 - 128	
cis-1,3-Dichloropropene	0.050	0.047	94.8	73 - 131	
Di-isopropyl ether	0.050	0.047	94.8	63 - 139	
Dibromomethane	0.050	0.049	97.9	73 - 125	
Dichlorodifluoromethane	0.050	0.049	97.3	39 - 189	
Ethylbenzene	0.050	0.047	94.5	76 - 129	
Hexachloro-1,3-butadiene	0.050	0.047	94.6	67 - 135	
Isopropylbenzene	0.050	0.049	97.1	73 - 132	
Methyl tert-butyl ether	0.050	0.049	97.9	51 - 142	
Methylene Chloride	0.050	0.044	88.8	64 - 125	
n-Butylbenzene	0.050	0.049	97.5	63 - 142	
n-Propylbenzene	0.050	0.049	97.3	71 - 132	
Naphthalene	0.050	0.052	.104	56 - 145	
p-Isopropyltoluene	0.050	0.050	99.3	68 - 138	
sec-Butylbenzene	0.050	0.049	97.6	70 - 135	
Styrene	0.050	0.050	100	78 - 130	
tert-Butylbenzene	0.050	0.048	96.3	72 - 134	
Tetrachloroethene	0.050	0.046	92.8	67 - 135	
Toluene	0.050	0.046	91.9	72 - 122	
trans-1,2-Dichloroethene	0.050	0.048	96.3	67 - 129	
trans-1,3-Dichloropropene	0.050	0.044	88.2	66 - 137	
Trichloroethene	0.050	0.048	95.6	74 - 126	
Trichlorofluoromethane	0.050	0.050	99.5	54 - 156	
Vinyl chloride	0.050	0.048	95.2	55 - 153	
Xylenes, Total	0.150	0.143	95.5	75 - 128	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7 Analyst: 156

Analytic Batch:WG392107

EPA ID: TN00003

L372815

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers	
1,1,1,2-Tetrachloroethane	0.050	0.053	106	75 - 134		
1,1,1-Trichloroethane	0.050	0.044	87.3	67 - 137		
1,1,2,2-Tetrachloroethane	0.050	0.054	108	72 - 128		
1,1,2-Trichloroethane	0.050	0.050	100	79 - 123		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.049	97.3	51 - 149		
1,1-Dichloroethane	0.050	0.045	89.2	67 - 133		
1,1-Dichloroethene	0.050	0.044	88.0	60 - 130		
1,1-Dichloropropene	0.050	0.042	83.4	68 - 132		
1,2,3-Trichlorobenzene	0.050	0.053	106	63 - 138		
1,2,3-Trichloropropane	0.050	0.052	104	68 - 130		
1,2,3-Trimethylbenzene	0.050	0.045	89.1	70 - 127		
1,2,4-Trichlorobenzene	0.050	0.049	97.0	65 - 137		
1,2,4-Trimethylbenzene	0.050	0.049	98.9	72 - 135		
1,2-Dibromo-3-Chloropropane	0.050	0.053	107	55 - 134		
1,2-Dibromoethane	0.050	0.052	103	75 - 126		
1,2-Dichlorobenzene	0.050	0.047	94.2	75 - 122		
1,2-Dichloroethane	0.050	0.047	93.1	63 - 137		
1,2-Dichloropropane	0.050	0.045	90.1	74 - 122		
1,3,5-Trimethylbenzene	0.050	0.049	98.2	73 - 134		
1,3-Dichlorobenzene	0.050	0.051	102	73 - 131		
1,3-Dichloropropane	0.050	0.048	95.6	77 - 119		
1,4-Dichlorobenzene	0.050	0.045	90.0	70 - 121		
2,2-Dichloropropane	0.050	0.042	83.1	46 - 151		
2-Butanone (MEK)	0.250	0.257	103	53 - 132		
2-Chloroethyl vinyl ether	0.250	0.245	98.1	0 - 171		
2-Chlorotoluene	0.050	0.048	95.4	74 - 128		
4-Chlorotoluene	0.050	0.049	97.5	74 - 130		
4-Methyl-2-pentanone (MIBK)	0.250	0.254	102	60 - 142		
Acetone	0.250	0.219	87.7	48 - 134		
Acrolein	0.250	0.352	141	6 - 182		
Acrylonitrile	0.250	0.260	104	60 - 140		
Benzene	0.050	0.044	87.3	67 - 126		
Bromobenzene	0.050	0.050	99.1	76 - 123		
Bromodichloromethane	0.050	0.047	94.4	68 - 133		

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7

Analyst:156 Analytic Batch:WG392107

EPA ID: TN00003

L372815

Laboratory Control Sample (LCS)

	True			Control	0 110
Analyte	Value	Found	%	Limits	Qualifiers
		0.040	05.0	(0 120	
Bromoform	0.050	0.048	95.2	60 - 139	
Bromomethane	0.050	0.040	79.1	45 - 175	
Carbon tetrachloride	0.050	0.043	85.6	64 - 141	
Chlorobenzene	0.050	0.049	97.9	77 - 125	
Chlorodibromomethane	0.050	0.052	104	73 - 138	
Chloroethane	0.050	0.038	75.6	49 - 155	
Chloroform	0.050	0.045	89.1	66 - 126	
Chloromethane	0.050	0.037	73.8	45 - 152	
cis-1,2-Dichloroethene	0.050	0.046	91.7	72 - 128	
cis-1,3-Dichloropropene	0.050	0.049	98.8	73 - 131	
Di-isopropyl ether	0.050	0.046	91.9	63 - 139	
Dibromomethane	0.050	0.048	96.5	73 - 125	
Dichlorodifluoromethane	0.050	0.053	105	39 - 189	
Ethylbenzene	0.050	0.047	93.6	76 - 129	
Hexachloro-1,3-butadiene	0.050	0.046	91.8	67 - 135	
Isopropylbenzene	0.050	0.048	96.3	73 - 132	
Methyl tert-butyl ether	0.050	0.049	97.9	51 - 142	
Methylene Chloride	0.050	0.046	91.3	64 - 125	
n-Butylbenzene	0.050	0.043	85.4	63 - 142	
n-Propylbenzene	0.050	0.046	92.8	71 - 132	
Naphthalene	0.050	0.056	112	56 - 145	
p-Isopropyltoluene	0.050	0.050	99.5	68 - 138	
sec-Butylbenzene	0.050	0.048	96.4	70 - 135	
Styrene	0.050	0.053	106	78 - 130	
tert-Butylbenzene	0.050	0.049	97.5	72 - 134	
Tetrachloroethene	0.050	0.046	92.9	67 - 135	
Toluene	0.050	0.042	84.5	72 - 122	
trans-1,2-Dichloroethene	0.050	0.044	88.9	67 - 129	
trans-1,3-Dichloropropene	0.050	0.049	98.0	66 - 137	
Trichloroethene	0.050	0.047	93.8	74 - 126	
Trichlorofluoromethane	0.050	0.039	77.1	54 - 156	
Vinyl chloride	0.050	0.037	74.1	55 - 153	
Xylenes, Total	0.150	0.145	96.5	75 - 128	
11 J 101100, 1 0141	0.100				

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number:L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7 Analyst: 156 Analytic Batch: WG392107 L372815

EPA ID: TN00003

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
			106	75 124	
1,1,1,2-Tetrachloroethane	0.050	0.053	106	75 - 134	
1,1,1-Trichloroethane	0.050	0.041	83.0	67 - 137	
1,1,2,2-Tetrachloroethane	0.050	0.053	106	72 - 128	
1,1,2-Trichloroethane	0.050	0.049	97.9	79 - 123	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.045	90.6	51 - 149	
1,1-Dichloroethane	0.050	0.042	83.7	67 - 133	
1,1-Dichloroethene	0.050	0.041	81.8	60 - 130	
1,1-Dichloropropene	0.050	0.040	79.2	68 - 132	
1,2,3-Trichlorobenzene	0.050	0.053	106	63 - 138	
1,2,3-Trichloropropane	0.050	0.051	102	68 - 130	
1,2,3-Trimethylbenzene	0.050	0.043	85.9	70 - 127	
1,2,4-Trichlorobenzene	0.050	0.047	94.0	65 - 137	
1,2,4-Trimethylbenzene	0.050	0.049	97.3	72 - 135	
1,2-Dibromo-3-Chloropropane	0.050	0.051	101	55 - 134	
1,2-Dibromoethane	0.050	0.051	101	75 - 126	
1,2-Dichlorobenzene	0.050	0.045	90.7	75 - 122	
1,2-Dichloroethane	0.050	0.045	89.3	63 - 137	
1,2-Dichloropropane	0.050	0.044	87.7	74 - 122	
1,3,5-Trimethylbenzene	0.050	0.049	97.5	73 - 134	
1,3-Dichlorobenzene	0.050	0.050	99.5	73 - 131	
1,3-Dichloropropane	0.050	0.048	95.5	77 - 119	
1,4-Dichlorobenzene	0.050	0.043	86.0	70 - 121	
2,2-Dichloropropane	0.050	0.041	81.1	46 - 151	
2-Butanone (MEK)	0.250	0.241	96.3	53 - 132	
2-Chloroethyl vinyl ether	0.250	0.243	97.4	0 - 171	
2-Chlorotoluene	0.050	0.047	94.0	74 - 128	
4-Chlorotoluene	0.050	0.047	94.4	74 - 130	
4-Methyl-2-pentanone (MIBK)	0.250	0.245	97.9	60 - 142	
Acetone	0.250	0.202	80.6	48 - 134	
Acrolein	0.250	0.334	133	6 - 182	
Acrylonitrile	0.250	0.242	96.9	60 - 140	
Benzene	0.050	0.042	83.0	67 - 126	
Bromobenzene	0.050	0.049	97.3	76 - 123	
Bromodichloromethane	0.050	0.045	92.3	68 - 133	

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM

Instrument ID:VOCMS7 Analyst:156 Analytic Batch:WG392107

1.00

EPA ID: TN00003

L372815

Analyte	True Value	Found	Recovery %	Control Limits Qualifier
Bromoform	0.050	0.046	92.8	60 - 139
Bromomethane	0.050	0.039	77.8	45 - 175
Carbon tetrachloride	0.050	0.042	83.1	64 - 141
Chlorobenzene	0.050	0.048	96.5	77 - 125
Chlorodibromomethane	0.050	0.052	103	73 - 138
Chloroethane	0.050	0.037	73.5	49 - 155
Chloroform	0.050	0.042	84.7	66 - 126
Chloromethane	0.050	0.036	72.5	45 - 152
cis-1,2-Dichloroethene	0.050	0.044	87.8	72 - 128
cis-1,3-Dichloropropene	0.050	0.049	97.2	73 - 131
Di-isopropyl ether	0.050	0.044	87.2	63 - 139
Dibromomethane	0.050	0.047	93.7	73 - 125
Dichlorodifluoromethane	0.050	0.051	102	39 - 189
Ethylbenzene	0.050	0.047	93.3	76 - 129
Hexachloro-1,3-butadiene	0.050	0.044	89.0	67 - 135
Isopropylbenzene	0.050	0.048	95.9	73 - 132
Methyl tert-butyl ether	0.050	0.047	93.7	51 - 142
Methylene Chloride	0.050	0.042	84.9	64 - 125
n-Butylbenzene	0.050	0.042	83.1	63 - 142
n-Propylbenzene	0.050	0.046	92.0	71 - 132
Naphthalene	0.050	0.056	113	56 - 145
p-Isopropyltoluene	0.050	0.049	98.4	68 - 138
sec-Butylbenzene	0.050	0.047	94.5	70 - 135
Styrene	0.050	0.052	105	78 - 130
tert-Butylbenzene	0.050	0.048	96.3	72 - 134
Tetrachloroethene	0.050	0.046	92.2	67 - 135
Toluene	0.050	0.042	83.1	72 - 122
trans-1,2-Dichloroethene	0.050	0.042	84.9	67 - 129
trans-1,3-Dichloropropene	0.050	0.048	96.2	66 - 137
Trichloroethene	0.050	0.046	91.6	74 - 126
Trichlorofluoromethane	0.050	0.038	75.0	54 - 156
Vinyl chloride	0.050	0.036	73.0	55 - 153
Xylenes, Total	0.150	0.143	95.5	75 - 128

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366

Analytic Batch:WG391737

EPA ID: TN00003

L372815

Matrix Spike/Matrix Spike Duplicate L372815-01

	Spike			%		%	Control		Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits		Limits Qualifier
1,1,1,2-Tetrachloroethane	0.050	0.000	0.048	95.1	0.048	95.1	45-152	0.0	21
1,1,1-Trichloroethane	0.050	0.000	0.042	83.7	0.041	81.6	31-161	2.5	23
1,1,2,2-Tetrachloroethane	0.050	0.000	0.051	102	0.049	98.1	49-149	4.1	22
1,1,2-Trichloroethane	0.050	0.000	0.046	91.1	0.044	88.8	46-145	2.6	20
1,1,2-Trichloro-1,2,2-	0.050	0.000	0.045	90.4	0.043	85.8	14-168	5.3	24
1,1-Dichloroethane	0.050	0.000	0.045	89.7	0.043	86.2	30-159	4.1	21
1,1-Dichloroethene	0.050	0.000	0.035	70.9	0.034	68.2	10-162	3.8	23
1,1-Dichloropropene	0.050	0.000	0.038	76.5	0.038	75.2	14-162	1.7	23
1,2,3-Trichlorobenzene	0.050	0.000	0.047	94.7	0.049	97.4	32-143	2.8	33
1,2,3-Trichloropropane	0.050	0.000	0.058	116	0.055	109	48-148	6.2	23
1,2,3-Trimethylbenzene	0.050	0.000	0.042	83.1	0.040	79.5	36-141	4.5	25
1,2,4-Trichlorobenzene	0.050	0.000	0.046	92.3	0.049	97.1	27-142	5.0	30
1,2,4-Trimethylbenzene	0.050	0.000	0.042	84.3	0.043	85.6	29-153	1.6	27
1,2-Dibromo-3-Chloropropane	0.050	0.000	0.067	135	0.061	122	37-148	10	27
1,2-Dibromoethane	0.050	0.000	0.047	94.3	0.045	90.0	41-149	4.7	21
1,2-Dichlorobenzene	0.050	0.000	0.045	90.9	0.044	88.0	40-139	3.2	23
1,2-Dichloroethane	0.050	0.000	0.045	89.2	0.043	86.5	29-167	3.0	21
1,2-Dichloropropane	0.050	0.000	0.044	87.2	0.043	85.1	39-148	2.4	20
1,3,5-Trimethylbenzene	0.050	0.000	0.042	84.9	0.043	86.7	33-149	2.1	26
1,3-Dichlorobenzene	0.050	0.000	0.045	90.6	0.046	91.2	32-148	0.7	24
1,3-Dichloropropane	0.050	0.000	0.046	92.1	0.045	89.3	44-142	3.1	20
1,4-Dichlorobenzene	0.050	0.000	0.044	87.8	0.042	83.1	32-136	5.5	23
2,2-Dichloropropane	0.050	0.000	0.043	86.3	0.042	83.8	14-158	2.9	23
2-Butanone (MEK)	0.250	0.000	0.376	151	0.330	132	32-151	13	26
2-Chloroethyl vinyl ether	0.250	0.000	0.071	28.5	0.065	26.0	0-175	8.9	75
2-Chlorotoluene	0.050	0.000	0.042	83.4	0.043	85.3	35-147	2.3	24
4-Chlorotoluene	0.050	0.000	0.041	82.2	0.042	83.8	33-147	1.9	25
4-Methyl-2-pentanone	0.250	0.000	0.347	139	0.305	122	40-160	13	28
Acetone	0.250	0.024	0.385	144	0.331	123	25-157	15	26
Acrolein	0.250	0.000	0.238	95.1	0.196	78.2	0-179	20	39
Acrylonitrile	0.250	0.000	0.338	135	0.297	119	37-162	13	24
Benzene	0.050	0.000	0.040	79.7	0.039	79.0	16-158	0.9	21
Bromobenzene	0.050	0.000	0.039	77.8	0.039	77.8	37-147	0.0	23
Bromodichloromethane	0.050	0.000	0.041	82.9	0.041	81.3	45-147	1.9	20

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate L372815-01

	Spike			%		%	Control		Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits		Limits Qualifier
Bromoform	0.050	0.000	0.053	105	0.051	102	38-152	3.0	20
Bromomethane	0.050	0.000	0.045	89.2	0.042	84.6	0-191	5.4	35
Carbon tetrachloride	0.050	0.000	0.043	85.1	0.042	83.5	22-168	1.9	24
Chlorobenzene	0.050	0.000	0.043	86.3	0.043	86.1	33-148	0.3	22
Chlorodibromomethane	0.050	0.000	0.049	97.0	0.048	95.8	48-151	1.3	21
Chloroethane	0.050	0.000	0.044	88.9	0.042	83.1	4-176	6.7	27
Chloroform	0.050	0.000	0.044	88.0	0.043	86.2	37-147	2.1	21
Chloromethane	0.050	0.000	0.031	61.7	0.029	57.1	10-174	7.8	28
cis-1,2-Dichloroethene	0.050	0.000	0.044	87.0	0.042	84.4	29-156	3.0	22
cis-1,3-Dichloropropene	0.050	0.000	0.044	87.8	0.042	84.6	35-148	3.8	21
Di-isopropyl ether	0.050	0.000	0.047	93.2	0.045	90.3	39-160	3.1	21
Dibromomethane	0.050	0.000	0.043	85.6	0.041	82.6	36-152	3.6	20
Dichlorodifluoromethane	0.050	0.000	0.037	73.6	0.036	72.6	0-200	1.4	26
Ethylbenzene	0.050	0.000	0.042	83.5	0.042	84.4	29-150	1.1	24
Hexachloro-1,3-butadiene	0.050	0.000	0.044	88.8	0.045	90.9	28-144	2.4	33
Isopropylbenzene	0.050	0.000	0.044	87.3	0.043	86.2	35-147	1.2	25
Methyl tert-butyl ether	0.050	0.000	0.049	98.4	0.047	94.0	24-167	4.6	22
Methylene Chloride	0.050	0.000	0.038	75.0	0.040	79.8	23-151	6.2	21
n-Butylbenzene	0.050	0.000	0.040	80.4	0.039	78.9	22-151	1.9	29
n-Propylbenzene	0.050	0.000	0.042	83.3	0.042	83.9	26-150	0.8	25
Naphthalene	0.050	0.000	0.047	94.6	0.049	98.1	24-160	3.6	37
p-Isopropyltoluene	0.050	0.000	0.042	84.8	0.044	87.4	28-151	3.1	27
sec-Butylbenzene	0.050	0.000	0.043	86.9	0.044	87.6	32-149	0.8	26
Styrene	0.050	0.000	0.045	90.1	0.045	89.6	38-149	0.5	23
tert-Butylbenzene	0.050	0.000	0.045	89.6	0.045	89.6	36-149	0.0	26
Tetrachloroethene	0.050	0.001	0.039	76.3	0.039	77.0	13-157	0.9	24
Toluene	0.050	0.000	0.039	78.1	0.038	75.1	22-152	3.9	22
trans-1,2-Dichloroethene	0.050	0.000	0.037	73.0	0.036	71.5	11-160	2.1	23
trans-1,3-Dichloropropene	0.050	0.000	0.045	90.3	0.043	85.6	33-153	5.4	22
Trichloroethene	0.050	0.000	0.041	81.0	0.039	78.7	18-163	2.9	21
Trichlorofluoromethane	0.050	0.000	0.041	81.4	0.038	76.9	10-177	5.6	24
Vinyl chloride	0.050	0.000	0.036	72.2	0.033	66.9	0-179	7.6	26
Xylenes, Total	0.150	0.000	0.122	81.5	0.124	82.5	27-151	1.2	23

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

4	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Qualifier RPD	Control Limits (Oualifier
Analyte		LCS	Rec	LCOD	Rec	Linna	Qualities In 2		<u>.</u>
1,1,1,2-Tetrachloroethane	0.050	0.052	105	0.049	98.9	75-134	5.6	20	
1,1,1-Trichloroethane	0.050	0.049	97.6	0.045	91.0	67-137	7.0	20	
1,1,2,2-Tetrachloroethane	0.050	0.045	90.8	0.048	96.6	72-128	6.2	20	
1,1,2-Trichloroethane	0.050	0.047	95.0	0.047	94.2	79-123	0.9	20	
1,1,2-Trichloro-1,2,2-	0.050	0.062	125	0.051	103	51-149	19	20	
1,1-Dichloroethane	0.050	0.052	104	0.049	98.1	67-133	5.6	20	
1,1-Dichloroethene	0.050	0.047	94.3	0.044	88.4	60-130	6.5	20	
1,1-Dichloropropene	0.050	0.049	98.3	0.047	94.4	68-132	4.0	20	
1,2,3-Trichlorobenzene	0.050	0.049	97.7	0.051	103	63-138	5.2	20	
1,2,3-Trichloropropane	0.050	0.050	100	0.055	110	68-130	9.3	20	
1,2,3-Trimethylbenzene	0.050	0.047	94.6	0.045	90.2	70-127	4.7	20	
1,2,4-Trichlorobenzene	0.050	0.051	103	0.052	104	65-137	1.0	20	
1,2,4-Trimethylbenzene	0.050	0.049	98.9	0.046	92.8	72-135	6.4	20	
1,2-Dibromo-3-Chloropropane	0.050	0.052	104	0.062	123	55-134	17	20	
1,2-Dibromoethane	0.050	0.049	97.4	0.049	98.7	75-126	1.3	20	
1,2-Dichlorobenzene	0.050	0.049	98.6	0.048	96.9	75-122	1.7	20	
1,2-Dichloroethane	0.050	0.050	99.6	0.050	99.5	63-137	0.2	20	
1,2-Dichloropropane	0.050	0.048	95.3	0.047	94.0	74-122	1.4	20	
1,3,5-Trimethylbenzene	0.050	0.050	101	0.047	94.2	73-134	6.6	20	
1,3-Dichlorobenzene	0.050	0.051	102	0.049	98.1	73-131	4.2	20	
1,3-Dichloropropane	0.050	0.048	95.8	0.048	96.7	77-119	0.9	20	
1,4-Dichlorobenzene	0.050	0.049	97.5	0.047	94.7	70-121	2.9	20	
2,2-Dichloropropane	0.050	0.049	97.2	0.046	92.9	46-151	4.5	20	
2-Butanone (MEK)	0.250	0.276	110	0.327	131	53-132	17	20	
2-Chloroethyl vinyl ether	0.250	0.049	19.5	0.075	30.0	0-171	43	27	J3
2-Chlorotoluene	0.050	0.049	97.2	0.046	92.1	74-128	5.3	20	
4-Chlorotoluene	0.050	0.048	96.8	0.045	90.3	74-130	7.0	20	
4-Methyl-2-pentanone	0.250	0.266	106	0.315	126	60-142	17	20	
Acetone	0.250	0.286	115	0.321	129	48-134	12	20	
Acrolein	0.250	0.488	195	0.312	125	6-182		39	J3
Acrylonitrile	0.250	0.281	112	0.310		60-140	10	20	
Benzene	0.050	0.050	99.1	0.048	95.4	67-126	3.9	20	
Bromobenzene	0.050	0.045	90.2	0.044	88.6	76-123	1.9	20	
Bromodichloromethane	0.050	0.046	91.7	0.044	88.0	68-133	4.1	20	

Quality Control Summary for client sample(s) MW-1S, MW-2S, MW-3S, MW-4S

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/2/2008 4:25:00 PM Instrument ID: VOCMS9 Analyst: 366 Analytic Batch: WG391737 L372815

EPA ID: TN00003

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Qualifier RPD	Control Limits Qualifier
Analyte								
Bromoform	0.050	0.050	100	0.052	104	60-139	3.8	20
Bromomethane	0.050	0.056	111	0.057	113	45-175	1.4	20
Carbon tetrachloride	0.050	0.051	103	0.049	97.3	64-141	5.4	20
Chlorobenzene	0.050	0.050	99.8	0.048	95.6	77-125	4.3	20
Chlorodibromomethane	0.050	0.051	102	0.050	99.0	73-138	3.1	20
Chloroethane	0.050	0.059	118	0.058	117	49-155	0.8	20
Chloroform	0.050	0.049) 99.0	0.047	93.5	66-126	5.7	20
Chloromethane	0.050	0.043	85.7	0.045	89.7	45-152	4.5	20
cis-1,2-Dichloroethene	0.050	0.050	100	0.048	96.3	72-128	4.0	20
cis-1,3-Dichloropropene	0.050	0.050	99.5	0.049	97.4	73-131		20
Di-isopropyl ether	0.050	0.050	99.8	0.048	96.0	63-139		20
Dibromomethane	0.050	0.047	93.8	0.048	96.0	73-125		20
Dichlorodifluoromethane	0.050	0.046	91.8	0.050	101	39-189	9.1	24
Ethylbenzene	0.050	0.050	99.5	0.048	95.9	76-129		20
Hexachloro-1,3-butadiene	0.050	0.052	105	0.049	98.4	67-135	6.2	20
Isopropylbenzene	0.050	0.051	102	0.047	94.4	73-132	2. 7.6	20
Methyl tert-butyl ether	0.050	0.049	97.8	0.051	102	51-142	2. 4.4	20
Methylene Chloride	0.050	0.046	92.9	0.048	96.0	64-125		20
n-Butylbenzene	0.050	0.048	96.2	0.045	90.4	63-142		20
n-Propylbenzene	0.050	0.049	98.5	0.047	93.1	71-132		20
Naphthalene	0.050	0.043	85.1	0.048	96.7	56-145		20
p-Isopropyltoluene	0.050	0.051	102	0.047	93.0	68-138		20
sec-Butylbenzene	0.050	0.051	101	0.047	93.2	70-135		20
Styrene	0.050	0.052	103	0.049	97.4	78-130		20
tert-Butylbenzene	0.050	0.050	101	0.048	96.2	72-134		20
Tetrachloroethene	0.050	0.050	100	0.049	97.8	67-13		20
Toluene	0.050	0.047	94.2	0.046	91.1	72-122		20
trans-1,2-Dichloroethene	0.050	0.048	96.5	0.048	95.9	67-129	9 0.6	20
trans-1,3-Dichloropropene	0.050	0.049	97.7	0.049	98.4	66-13		20
Trichloroethene	0.050	0.051	101	0.049	97.8	74-120	5 3.6	20
Trichlorofluoromethane	0.050	0.050	101	0.051	103	54-15		20
Vinyl chloride	0.050	0.049	97.2	0.050	99.9	55-15		20
Xylenes, Total	0.150	0.150	99.7	0.142	94.4	75-12	3 5.5	20

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366

Analytic Batch:WG391933

EPA ID: TN00003

L372815

Matrix Spike/Matrix Spike Duplicate L372857-01

	Spike			%		%	Control	ç		Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RI	PD	Limits (Qualifier
1,1,1,2-Tetrachloroethane	0.050	0.000	0.049	98.8	0.050	100	45-152	1	.6	21	
1,1,1-Trichloroethane	0.050	0.000	0.051	101	0.051	103	31-161	1	.7	23	
1,1,2,2-Tetrachloroethane	0.050	0.000	0.051	101	0.052	105	49-149	3	5.4	22	
1,1,2-Trichloroethane	0.050	0.000	0.050	99.3	0.051	102	46-145	2	2.5	20	
1,1,2-Trichloro-1,2,2-	0.050	0.000	0.051	101	0.050	99.3	14-168		.9	24	
1,1-Dichloroethane	0.050	0.000	0.050	101	0.049	97.7	30-159	2	2.9	21	
1,1-Dichloroethene	0.050	0.000	0.051	102	0.050	100	10-162		2.0	23	
1,1-Dichloropropene	0.050	0.000	0.049	97.4	0.050	99.8	14-162		2.4	23	
1,2,3-Trichlorobenzene	0.050	0.000	0.049	97.4	0.050	99.4	32-143		2.0	33	
1,2,3-Trichloropropane	0.050	0.000	0.052	104	0.055	109	48-148		1.8	23	
1,2,3-Trimethylbenzene	0.050	0.000	0.049	98.1	0.049	98.9	36-141).8	25	
1,2,4-Trichlorobenzene	0.050	0.000	0.049	99.0	0.050	101	27-142		2.0	30	
1,2,4-Trimethylbenzene	0.050	0.000	0.048	95.7	0.049	98.7	29-153		3.1	27	
1,2-Dibromo-3-Chloropropane	0.050	0.000	0.054	107	0.055	109	37-148		l.7	27	
1,2-Dibromoethane	0.050	0.000	0.050	99.1	0.052	104	41-149		1.6	21	
1,2-Dichlorobenzene	0.050	0.000	0.049	97.7	0.049	98.0	40-139).4	23	
1,2-Dichloroethane	0.050	0.000	0.049	98.1	0.050	100	29-167		2.2	21	
1,2-Dichloropropane	0.050	0.000	0.005	10.3	0.001	1.6	39-148		45	20	J3
1,3,5-Trimethylbenzene	0.050	0.000	0.049	97.9	0.050	99.8	33-149		2.0	26	
1,3-Dichlorobenzene	0.050	0.000	0.047	94.3	0.048	97.0	32-148		2.9	24	
1,3-Dichloropropane	0.050	0.000	0.048	95.0	0.050	100	44-142		5.2	20	
1,4-Dichlorobenzene	0.050	0.000	0.047	94.3	0.048	95.5	32-136		1.3	23	
2,2-Dichloropropane	0.050	0.000	0.049	98.5	0.049	97.1	14-158		1.4	23	
2-Butanone (MEK)	0.250	0.000	0.249	99.6	0.261	104	32-151		4.7	26	70
2-Chloroethyl vinyl ether	0.250	0.000	0.026	10.4	0.004	1.7	0-175		42	75	J3
2-Chlorotoluene	0.050	0.000	0.048	95.9	0.049	98.1	35-147		2.3	24	
4-Chlorotoluene	0.050	0.000	0.049	97.1	0.050	99.9	33-147		2.8	25	
4-Methyl-2-pentanone	0.250	0.000	0.256	102	0.264	106	40-160		3.3	28	
Acetone	0.250	0.000	0.243	97.2	0.244	97.6	25-157		0.5	26	
Acrolein	0.250	0.000	0.163	65.2	0.166	66.3	0-179		1.7	39	
Acrylonitrile	0.250	0.000	0.258	103	0.258	103	37-162		0.0	24	
Benzene	0.050	0.000	0.048	95.2	0.049	98.1	16-158		3.0	21	
Bromobenzene	0.050	0.000	0.047	93.7	0.049	97.3	37-147		3.7	23	
Bromodichloromethane	0.050	0.000	0.048	96.7	0.051	101	45-147	4	4.6	20	

Quality Control Summary for client sample(s) MW-5S, MW-2D, MW-3D

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366

Analytic Batch:WG391933

EPA ID: TN00003

L372815

Matrix Spike/Matrix Spike Duplicate L372857-01

	Spike			%		%	Control		Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Bromoform	0.050	0.000	0.053	107	0.055	111	38-152	3.6	20
Bromomethane	0.050	0.000	0.061	123	0.062	123	0-191	0.4	35
Carbon tetrachloride	0.050	0.000	0.049	97.7	0.049	98.0	22-168	0.3	24
Chlorobenzene	0.050	0.000	0.048	96.3	0.049	98.2	33-148	2.0	22
Chlorodibromomethane	0.050	0.000	0.050	101	0.052	105	48-151	4.1	21
Chloroethane	0.050	0.000	0.050	99.3	0.049	97.6	4-176	1.7	27
Chloroform	0.050	0.000	0.048	96.3	0.049	97.9	37-147	1.6	21
Chloromethane	0.050	0.000	0.049	98.6	0.047	93.5	10-174	5.3	28
cis-1,2-Dichloroethene	0.050	0.000	0.050	100	0.050	99.5	29-156	0.8	22
cis-1,3-Dichloropropene	0.050	0.000	0.048	96.8	0.049	98.4	35-148	1.7	21
Di-isopropyl ether	0.050	0.000	0.049	97.8	0.048	96.9	39-160	0.9	21
Dibromomethane	0.050	0.000	0.049	98.9	0.051	101	36-152	2.1	20
Dichlorodifluoromethane	0.050	0.000	0.051	103	0.049	98.5	0-200	4.1	26
Ethylbenzene	0.050	0.000	0.049	98.1	0.050	99.6	29-150	1.6	24
Hexachloro-1,3-butadiene	0.050	0.000	0.048	95.3	0.049	97.5	28-144	2.3	33
Isopropylbenzene	0.050	0.000	0.049	98.1	0.050	100	35-147	2.0	25
Methyl tert-butyl ether	0.050	0.000	0.048	96.1	0.049	97.2	24-167	1.1	22
Methylene Chloride	0.050	0.000	0.046	91.0	0.045	90.5	23-151	0.6	21
n-Butylbenzene	0.050	0.000	0.051	102	0.051	101	22-151	0.1	29
n-Propylbenzene	0.050	0.000	0.049	97.9	0.050	99.5	26-150	1.6	25
Naphthalene	0.050	0.000	0.052	104	0.053	106	24-160	2.2	37
p-Isopropyltoluene	0.050	0.000	0.050	99.3	0.051	102	28-151	2.9	27
sec-Butylbenzene	0.050	0.000	0.049	97.9	0.050	100	32-149	2.2	26
Styrene	0.050	0.000	0.051	102	0.052	105	38-149	2.7	23
tert-Butylbenzene	0.050	0.000	0.049	97.0	0.049	98.3	36-149	1.3	26
Tetrachloroethene	0.050	0.000	0.048	95.7	0.048	95.9	13-157	0.2	24
Toluene	0.050	0.000	0.047	94.2	0.048	95.5	22-152	1.4	22
trans-1,2-Dichloroethene	0.050	0.000	0.050	99.1	0.049	98.3	11-160	0.8	23
trans-1,3-Dichloropropene	0.050	0.000	0.044	88.2	0.046		33-153	4.2	22
Trichloroethene	0.050	0.000	0.049	97.7	0.049	98.1	18-163	0.4	21
Trichlorofluoromethane	0.050	0.000	0.051	103	0.051	102	10-177	0.7	24
Vinyl chloride	0.050	0.000	0.051	101	0.048	96.0	0-179	5.3	26
Xylenes, Total	0.150	0.000	0.146	97.6	0.150	99.8	27-151	2.3	23

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5 Analyst: 366

Analytic Batch:WG391933

13

EPA ID: TN00003

L372815

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
	0.050	0.051	100	0.040	97.3	75-134	4.6	20
1,1,1,2-Tetrachloroethane	0.050	0.051	102	0.049 0.049	97.3 97.2	67-137	6.5	20
1,1,1-Trichloroethane	0.050	0.052	104	0.049	102	72-128		20
1,1,2,2-Tetrachloroethane	0.050	0.052	103	0.031	98.1	72-128		20
1,1,2-Trichloroethane	0.050	0.051	102		98.1 96.7	51-149		20
1,1,2-Trichloro-1,2,2-	0.050	0.053	106	0.048	96.7 94.1	67-133		20
1,1-Dichloroethane	0.050	0.051	101	0.047				20
1,1-Dichloroethene	0.050	0.054	108	0.049	98.1	60-130		20
1,1-Dichloropropene	0.050	0.051	102	0.047	94.0	68-132		20
1,2,3-Trichlorobenzene	0.050	0.051	101	0.049	97.4	63-138		20
1,2,3-Trichloropropane	0.050	0.055	110	0.053	105	68-130		20 20
1,2,3-Trimethylbenzene	0.050	0.050	100	0.047	94.7	70-127		
1,2,4-Trichlorobenzene	0.050	0.052	103	0.049	98.7	65-137		20
1,2,4-Trimethylbenzene	0.050	0.049	99.0	0.049	97.0	72-135		20
1,2-Dibromo-3-Chloropropane	0.050	0.055	110	0.053	107	55-134		20
1,2-Dibromoethane	0.050	0.051	103	0.050	99.1	75-126		20
1,2-Dichlorobenzene	0.050	0.050	99.9	0.047	94.7	75-122		20
1,2-Dichloroethane	0.050	0.050	99.3	0.048	95.6	63-137		20
1,2-Dichloropropane	0.050	0.052	105	0.053	105	74-122		20
1,3,5-Trimethylbenzene	0.050	0.050	100	0.049	97.9	73-134		20
1,3-Dichlorobenzene	0.050	0.048	96.6	0.048	95.1	73-131		20
1,3-Dichloropropane	0.050	0.049	98.5	0.047	94.1	77-119		20
1,4-Dichlorobenzene	0.050	0.049	97.4	0.045	90.9	70-121		20
2,2-Dichloropropane	0.050	0.050	100	0.047	93.6	46-151		20
2-Butanone (MEK)	0.250	0.263	105	0.250	100	53-132		20
2-Chloroethyl vinyl ether	0.250	0.261	104	0.264	105	0-171		27
2-Chlorotoluene	0.050	0.049	98.4	0.048	96.1	74-128		20
4-Chlorotoluene	0.050	0.050	99.2	0.048	96.7	74-130) 2.6	20
4-Methyl-2-pentanone	0.250	0.264	106	0.262	105	60-142	2 1.1	20
Acetone	0.250	0.262	105	0.248	99.2	48-134	4 5.3	20
Acrolein	0.250	0.202	81.0	0.207	82.7	6-182	2.2	39
Acrylonitrile	0.250	0.263	105	0.252	101	60-140) 4.3	20
Benzene	0.050	0.049	97.9	0.046	91.2	67-12	5 7.0	20
Bromobenzene	0.050	0.049	97.3	0.047		76-12	3 3.5	20
Bromodichloromethane	0.050	0.051	101	0.048		68-13		20
Diomonicinoroniculanc	0.050	0.001	101	2.0.0	3			

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-05, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/3/2008 Analysis Date: 11/3/2008 9:49:00 PM Instrument ID: VOCGCMS5

strument ID:VO Analyst:366

Analytic Batch:WG391933

EPA ID: TN00003

L372815

	Spike	*	%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
D	0.050	0.055	110	0.054	109	60-139	1.0	20
Bromoform	0.050	0.055	127	0.054	118	45-175		20
Bromomethane	0.050		127	0.039	94.8	64-141		20
Carbon tetrachloride	0.050	0.050	97.8	0.047	94.8 93.6	77-125		20
Chlorobenzene	0.050	0.049			95.0 101	73-138		20
Chlorodibromomethane	0.050	0.053	105	0.050		49-155		20
Chloroethane	0.050	0.052	104	0.048	95.6			20 20
Chloroform	0.050	0.050	99.0	0.047	93.4	66-126		20 20
Chloromethane	0.050	0.051	102	0.046	91.9	45-152		
cis-1,2-Dichloroethene	0.050	0.051	102	0.048	95.3	72-128		20
cis-1,3-Dichloropropene	0.050	0.050	99.8	0.047	94.8	73-131		20
Di-isopropyl ether	0.050	0.050	100	0.047	94.8	63-139		20
Dibromomethane	0.050	0.050	101	0.049	97.9	73-125		20
Dichlorodifluoromethane	0.050	0.054	108	0.049	97.3	39-189		24
Ethylbenzene	0.050	0.050	100	0.047	94.5	76-129		20
Hexachloro-1,3-butadiene	0.050	0.050	99.1	0.047	94.6	67-135		20
Isopropylbenzene	0.050	0.050	100	0.049	97.1	73-132		20
Methyl tert-butyl ether	0.050	0.051	102	0.049	97.9	51-142		20
Methylene Chloride	0.050	0.048	95.5	0.044	88.8	64-125		20
n-Butylbenzene	0.050	0.051	103	0.049	97.5	63-142	2. 5.3	20
n-Propylbenzene	0.050	0.050	99.9	0.049	97.3	71-132	2 2.6	20
Naphthalene	0.050	0.054	107	0.052	104	56-145	5 3.4	20
p-Isopropyltoluene	0.050	0.051	101	0.050	99.3	68-138	3 2.0	20
sec-Butylbenzene	0.050	0.050	99.1	0.049	97.6	70-135	5 1.5	20
Styrene	0.050	0.053	105	0.050	100	78-130) 5.1	20
tert-Butylbenzene	0.050	0.049	98.5	0.048	96.3	72-134	1 2.3	20
Tetrachloroethene	0.050	0.049	97.8	0.046	92.8	67-135	5 5.2	20
Toluene	0.050	0.049	97.3	0.046	91.9	72-122	2 5.7	20
trans-1,2-Dichloroethene	0.050	0.052	104	0.048	96.3	67-129		20
trans-1,3-Dichloropropene	0.050	0.046	92.3	0.044		66-13		20
Trichloroethene	0.050	0.050	100	0.048	95.6	74-120		20
Trichlorofluoromethane	0.050	0.053	100	0.050		54-150		20
	0.050	0.053	105	0.048	95.2	55-15		20
Vinyl chloride		0.053	100	0.048		75-12		20
Xylenes, Total	0.150	0.150	100	0.143	70.0	15-120	5 7.0	20

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM

Instrument ID:VOCMS7 Analyst:156

Analytic Batch:WG392107

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate L372975-01

	Spike			%		%	Control	% Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD Limits Qualifi	er
1,1,1,2-Tetrachloroethane	0.050	0.000	0.052	104	0.053	106	45-152	1.5 21	
1,1,1-Trichloroethane	0.050	0.000	0.044	88.6	0.047	94.4	31-161	6.3 23	
1,1,2,2-Tetrachloroethane	0.050	0.000	0.057	113	0.056	111	49-149	1.4 22	
1,1,2-Trichloroethane	0.050	0.000	0.050	100.0	0.050	101	46-145	0.7 20	
1,1,2-Trichloro-1,2,2-	0.050	2.30	2.38	158	2.44	288	14-168	V 2.7 24	
1,1-Dichloroethane	0.050	0.001	0.044	85.9	0.046	89.2	30-159	3.6 21	
1,1-Dichloroethene	0.050	0.000	0.062	123	0.066	131	10-162	6.7 23	
1,1-Dichloropropene	0.050	0.000	0.041	81.4	0.043	86.6	14-162	6.1 23	
1,2,3-Trichlorobenzene	0.050	0.000	0.052	104	0.056	111	32-143	6.2 33	
1,2,3-Trichloropropane	0.050	0.000	0.054	107	0.052	104	48-148	3.5 23	
1,2,3-Trimethylbenzene	0.050	0.000	0.043	85.4	0.045	89.1	36-141	4.2 25	
1,2,4-Trichlorobenzene	0.050	0.000	0.048	95.3	0.050	100	27-142	5.3 30	
1,2,4-Trimethylbenzene	0.050	0.000	0.047	94.2	0.048	95.5	29-153	1.3 27	
1,2-Dibromo-3-Chloropropane	0.050	0.000	0.056	113	0.059	118	37-148	4.1 27	
1,2-Dibromoethane	0.050	0.000	0.052	105	0.052	103	41-149	1.7 21	
1,2-Dichlorobenzene	0.050	0.000	0.045	90.7	0.047	93.8	40-139	3.4 23	
1,2-Dichloroethane	0.050	0.000	0.045	90.5	0.046	92.5	29-167	2.1 21	
1,2-Dichloropropane	0.050	0.000	0.045	90.4	0.046	92.7	39-148	2.4 20	
1,3,5-Trimethylbenzene	0.050	0.000	0.047	94.3	0.048	96.4	33-149	2.3 26	
1,3-Dichlorobenzene	0.050	0.000	0.049	97.8	0.049	98.4	32-148	0.6 24	
1,3-Dichloropropane	0.050	0.000	0.048	95.6	0.048	95.8	44-142	0.2 20	
1,4-Dichlorobenzene	0.050	0.000	0.043	86.6	0.045	89.4	32-136	3.2 23	
2,2-Dichloropropane	0.050	0.000	0.038	75.6	0.039	78.5	14-158	3.7 23	
2-Butanone (MEK)	0.250	0.000	0.285	114	0.277	111	32-151	2.7 26	
2-Chloroethyl vinyl ether	0.250	0.000	0.000	0.2	0.000	0.2	0-175	0.6 75	
2-Chlorotoluene	0.050	0.000	0.047	93.9	0.047	94.4	35-147	0.6 24	
4-Chlorotoluene	0.050	0.000	0.047	93.6	0.047	94.5	33-147	0.9 25	
4-Methyl-2-pentanone	0.250	0.000	0.264	106	0.266	106	40-160	0.7 28	
Acetone	0.250	0.000	0.257	103	0.246		25-157	4.3 26	
Acrolein	0.250	0.000	0.158	63.3	0.156		0-179	1.4 39	
Acrylonitrile	0.250	0.000	0.266	106	0.257	103	37-162	3.4 24	
Benzene	0.050	0.000	0.042	83.8	0.044		16-158	5.2 21	
Bromobenzene	0.050	0.000	0.049	97.0	0.048		37-147	0.5 23	
Bromodichloromethane	0.050	0.000	0.048	96.0	0.049	97.6	45-147	1.6 20	

Quality Control Summary for client sample(s) MW-1D

L372815

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7

Analyst:156

Analytic Batch:WG392107

L372815

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate L372975-01

	Spike			%		%	Control		Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Bromoform	0.050	0.000	0.049	98.8	0.050	99.0	38-152	0.2	20
Bromomethane	0.050	0.000	0.040	79.9	0.040	81.0	0-191	1.3	35
Carbon tetrachloride	0.050	0.000	0.043	86.8	0.046	92.4	22-168	6.2	24
Chlorobenzene	0.050	0.000	0.048	95.1	0.048	96.3	33-148	1.3	22
Chlorodibromomethane	0.050	0.000	0.053	106	0.054	107	48-151	1.3	21
Chloroethane	0.050	0.000	0.039	78.0	0.041	82.6	4-176	5.7	27
Chloroform	0.050	0.000	0.047	93.0	0.047	94.9	37-147	2.0	21
Chloromethane	0.050	0.000	0.038	75.2	0.041	81.4	10-174	7.9	28
cis-1,2-Dichloroethene	0.050	1.80	1.85	98.7	1.79	-25.8	29-156	J6 3.4	22
cis-1,3-Dichloropropene	0.050	0.000	0.048	96.4	0.050	99.0	35-148	2.7	21
Di-isopropyl ether	0.050	0.000	0.045	90.2	0.046	91.4	39-160	1.3	21
Dibromomethane	0.050	0.000	0.049	98.0	0.049	98.6	36-152	0.6	20
Dichlorodifluoromethane	0.050	0.064	0.111	93.1	0.118	107	0-200	6.3	26
Ethylbenzene	0.050	0.000	0.046	91.4	0.047	94.3	29-150	3.2	24
Hexachloro-1,3-butadiene	0.050	0.000	0.046	91.5	0.049	97.4	28-144	6.2	33
Isopropylbenzene	0.050	0.000	0.047	93.9	0.048	96.3	35-147	2.5	25
Methyl tert-butyl ether	0.050	0.000	0.049	97.8	0.049	97.7	24-167	0.1	22
Methylene Chloride	0.050	0.000	0.045	89.2	0.045	90.6	23-151	1.5	21
n-Butylbenzene	0.050	0.000	0.042	83.5	0.044	88.0	22-151	5.3	29
n-Propylbenzene	0.050	0.000	0.046	91.5	0.046	92.7	26-150	1.3	25
Naphthalene	0.050	0.000	0.057	113	0.059	118	24-160	3.9	37
p-Isopropyltoluene	0.050	0.000	0.048	96.1	0.049	98.1	28-151	2.1	27
sec-Butylbenzene	0.050	0.000	0.047	94.4	0.048	95.7	32-149	1.4	26
Styrene	0.050	0.000	0.050	101	0.051	102	38-149	0.7	23
tert-Butylbenzene	0.050	0.000	0.048	96.0	0.048	96.8	36-149	0.8	26
Tetrachloroethene	0.050	0.010	0.056	92.2	0.058	96.7	13-157	3.9	24
Toluene	0.050	0.000	0.041	81.7	0.043	86.5	22-152	5.8	22
trans-1,2-Dichloroethene	0.050	0.008	0.046	75.8	0.049	80.5	11-160	4.9	23
trans-1,3-Dichloropropene	0.050	0.000	0.049	97.5	0.050	99.3	33-153	1.9	22
Trichloroethene	0.050	0.620	0.666	92.6	0.688	135	18-163	3.1	21
Trichlorofluoromethane	0.050	0.000	0.040	79.6	0.041	81.6	10-177	2.6	24
Vinyl chloride	0.050	0.210	0.246	71.5	0.267	115	0-179	8.4	26
Xylenes, Total	0.150	0.000	0.140	93.4	0.144	95.7	27-151	2.5	23

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM

Instrument ID:VOCMS7 Analyst:156

Analytic Batch:WG392107

L372815

EPA ID: TN00003

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
1,1,1,2-Tetrachloroethane	0.050	0.053	106	0.053	106	75-134	0.0	20
1,1,1-Trichloroethane	0.050	0.044	87.3	0.041	83.0	67-137	5.1	20
1,1,2,2-Tetrachloroethane	0.050	0.054	108	0.053	106	72-128	2.4	20
1,1,2-Trichloroethane	0.050	0.050	100	0.049	97.9	79-123	2.6	20
1,1,2-Trichloro-1,2,2-	0.050	0.049	97.3	0.045	90.6	51-149	7.1	20
1,1-Dichloroethane	0.050	0.045	89.2	0.042	83.7	67-133	6.4	20
1,1-Dichloroethene	0.050	0.044	88.0	0.041	81.8	60-130	7.3	20
1,1-Dichloropropene	0.050	0.042	83.4	0.040	79.2	68-132	5.1	20
1,2,3-Trichlorobenzene	0.050	0.053	106	0.053	106	63-138	0.6	20
1,2,3-Trichloropropane	0.050	0.052	104	0.051	102	68-130	1.6	20
1,2,3-Trimethylbenzene	0.050	0.045	89.1	0.043	85.9	70-127	3.6	20
1,2,4-Trichlorobenzene	0.050	0.049	97.0	0.047	94.0	65-137	3.1	20
1,2,4-Trimethylbenzene	0.050	0.049	98.9	0.049	97.3	72-135	1.6	20
1,2-Dibromo-3-Chloropropane	0.050	0.053	107	0.051	101	55-134	5.3	20
1,2-Dibromoethane	0.050	0.052	103	0.051	101	75-126	1.8	20
1,2-Dichlorobenzene	0.050	0.047	94.2	0.045	90.7	75-122	3.7	20
1,2-Dichloroethane	0.050	0.047	93.1	0.045	89.3	63-137	4.2	20
1,2-Dichloropropane	0.050	0.045	90.1	0.044	87.7	74-122	2.7	20
1,3,5-Trimethylbenzene	0.050	0.049	98.2	0.049	97.5	73-134	0.7	20
1,3-Dichlorobenzene	0.050	0.051	102	0.050	99.5	73-131	2.3	20
1,3-Dichloropropane	0.050	0.048	95.6	0.048	95.5	77-119	0.1	20
1,4-Dichlorobenzene	0.050	0.045	90.0	0.043	86.0	70-121	4.5	20
2,2-Dichloropropane	0.050	0.042	83.1	0.041	81.1	46-151	2.4	20
2-Butanone (MEK)	0.250	0.257	103	0.241	96.3	53-132	6.4	20
2-Chloroethyl vinyl ether	0.250	0.245	98.1	0.243	97.4	0-171	0.7	27
2-Chlorotoluene	0.050	0.048	95.4	0.047	94.0	74-128	1.4	20
4-Chlorotoluene	0.050	0.049	97.5	0.047	94.4	74-130	3.2	20
4-Methyl-2-pentanone	0.250	0.254	102	0.245	97.9	60-142	3.6	20
Acetone	0.250	0.219	87.7	0.202	80.6	48-134	8.3	20
Acrolein	0.250	0.352	141	0.334	133	6-182	5.3	39
Acrylonitrile	0.250	0.260	104	0.242	96.9	60-140) 7.1	20
Benzene	0.050	0.044	87.3	0.042	83.0	67-126		20
Bromobenzene	0.050	0.050	99.1	0.049	97.3	76-123		20
Bromodichloromethane	0.050	0.047	94.4	0.046	92.3	68-133	2.3	20

Quality Control Summary

Envirotest

Test: Volatile Organic Compounds by Method 8260B Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-06 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 7:47:00 AM Instrument ID: VOCMS7

Analyst: 156 Analytic Batch: WG392107

EPA ID: TN00003

L372815

	Spike		%		%	Control	%	Control Limits Qualifier
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Linits Quanner
	0.050	0.048	95.2	0.046	92.8	60-139	2.5	20
Bromoform	0.050	0.048	93.2 79.1	0.040	77.8	45-175		20
Bromomethane	0.050		85.6	0.039	83.1	64-141		20
Carbon tetrachloride	0.050	0.043	83.0 97.9	0.042	96.5	77-125		20
Chlorobenzene	0.050	0.049	97.9 104	0.048	103	73-138		20
Chlorodibromomethane	0.050	0.052	75.6	0.032	73.5	49-155		20
Chloroethane	0.050	0.038			73.3 84.7	66-126		20
Chloroform	0.050	0.045	89.1	0.042		45-152		20
Chloromethane	0.050	0.037	73.8	0.036	72.5			20
cis-1,2-Dichloroethene	0.050	0.046	91.7	0.044	87.8	72-128		20
cis-1,3-Dichloropropene	0.050	0.049	98.8	0.049	97.2	73-131		20
Di-isopropyl ether	0.050	0.046	91.9	0.044	87.2	63-139		20
Dibromomethane	0.050	0.048	96.5	0.047	93.7	73-125		20 24
Dichlorodifluoromethane	0.050	0.053	105	0.051	102	39-189		
Ethylbenzene	0.050	0.047	93.6	0.047	93.3	76-129		20
Hexachloro-1,3-butadiene	0.050	0.046	91.8	0.044	89.0	67-135		20
Isopropylbenzene	0.050	0.048	96.3	0.048	95.9	73-132		20
Methyl tert-butyl ether	0.050	0.049	97.9	0.047	93.7	51-142		20
Methylene Chloride	0.050	0.046	91.3	0.042	84.9	64-125		20
n-Butylbenzene	0.050	0.043	85.4	0.042	83.1	63-142		20
n-Propylbenzene	0.050	0.046	92.8	0.046	92.0	71-132		20
Naphthalene	0.050	0.056	112	0.056	113	56-14		20
p-Isopropyltoluene	0.050	0.050	99.5	0.049	98.4	68-138		20
sec-Butylbenzene	0.050	0.048	96.4	0.047	94.5	70-13		20
Styrene	0.050	0.053	106	0.052	105	78-130		20
tert-Butylbenzene	0.050	0.049	97.5	0.048	96.3	72-134		20
Tetrachloroethene	0.050	0.046	92.9	0.046	92.2	67-13	5 0.8	20
Toluene	0.050	0.042	84.5	0.042	83.1	72-122		20
trans-1,2-Dichloroethene	0.050	0.044	88.9	0.042	84.9	67-129		20
trans-1,3-Dichloropropene	0.050	0.049	98.0	0.048	96.2	66-13	7 1.8	20
Trichloroethene	0.050	0.047	93.8	0.046	91.6	74-12	5 2.4	20
Trichlorofluoromethane	0.050	0.039	77.1	0.038	75.0	54-15	5 2.8	20
Vinyl chloride	0.050	0.037	74.1	0.036		55-15	3 1.5	20
Xylenes, Total	0.150	0.145	96.5	0.143		75-12		20
Ayiones, rotar	0.150	011 10	2 010					

Quality Control Summary

Envirotest

Test: TPH C6 - C35 by Method 8015 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-04, -05, -06, -08, -01, -07, -02, -03 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/5/2008 10:26:00 PM Instrument ID: SVGC13 Analyst: 287 Analytic Batch: WG391791 L372815

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL	MDL
TPH C12 - C28		<5.00	<1.65
TPH C28 - C35		<5.00	<1.65
TPH C6 - C12		<5.00	<1.65
TPH C6 - C35		<5.00	<1.65

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPH C12 - C28	83.3	104	125	75 - 125	
TPH C6 - C12	83.3	93.1	112	75 - 125	
TPH C6 - C35	167	197	118	75 - 125	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPH C12 - C28 TPH C6 - C12	83.3 83.3	96.7 87.3	116 105	75 - 125 75 - 125	
TPH C6 - C35	167	184	110	75 - 125	

Environmental Science Corporation Quality Control Summary

Envirotest

Test: TPH C6 - C35 by Method 8015 Matrix: Water - mg/L Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L372815 Sample Number:L372815-04, -05, -06, -08, -01, -07, -02, -03 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/5/2008 10:26:00 PM Instrument ID:SVGC13 Analyst:287 Analytic Batch:WG391791

×. .

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Control Qualifier RPD Limits Qualifier
TPH C12 - C28	83.3	104	125	96.7	116	75-125	7.3206.5206.920
TPH C6 - C12	83.3	93.1	112	87.3	105	75-125	
TPH C6 - C35	167	197	118	184	110	75-125	

L372815

Quality Control Summary

Envirotest

Test: Semi-volatile Organic Compounds by Method 8270C-SIM Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number: L372815-01, -02, -03, -04, -05, -06, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 8:31:00 PM Instrument ID: BNAMS3 Analyst: 228 Analytic Batch: WG391831

L372815

EPA ID: TN00003

lethod Blank		
CAS	PQL	MDL
90-12-0	<0.010	< 0.0033
	< 0.010	< 0.0033
83-32-9	<0.010	< 0.0033
208-96-8	< 0.010	< 0.0033
120-12-7	< 0.010	< 0.0033
56-55-3	< 0.010	< 0.0033
50-32-8	< 0.010	< 0.0033
	< 0.010	< 0.0033
191-24-2	< 0.010	< 0.0033
207-08-9	< 0.010	< 0.0033
218-01-9	< 0.010	< 0.0033
53-70-3	< 0.010	< 0.0033
	< 0.010	< 0.0033
86-73-7	< 0.010	< 0.0033
193-39-5	< 0.010	< 0.0033
91-20-3	< 0.010	< 0.0033
85-01-8	< 0.010	< 0.0033
129-00-0	< 0.010	< 0.0033
	CAS 90-12-0 91-57-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8	CASPQL $90-12-0$ <0.010

Environmental Science Corporation Quality Control Summary Envirotest Test:Semi-volatile Organic Compounds by Method 8270C-SIM L372815 Matrix: Water - mg/L Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L372815 Sample Number:L372815-01, -02, -03, -04, -05, -06, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 8:31:00 PM Instrument ID: BNAMS3 Analyst:228 EPA ID: TN00003 Analytic Batch: WG391831

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
	0.001	0.001	82.9	30 - 123	
1-Methylnaphthalene	0.001	0.001			
2-Methylnaphthalene	0.001	0.001	86.8	29 - 116	
Acenaphthene	0.001	0.001	98.1	40 - 113	
Acenaphthylene	0.001	0.001	93.5	36 - 115	
Anthracene	0.001	0.001	92.0	45 - 118	
Benzo(a)anthracene	0.001	0.001	92.0	36 - 129	
Benzo(a)pyrene	0.001	0.001	91.0	44 - 124	
Benzo(b)fluoranthene	0.001	0.001	95.4	43 - 126	
Benzo(g,h,i)perylene	0.001	0.001	101	39 - 128	
Benzo(k)fluoranthene	0.001	0.001	83.7	44 - 127	
Chrysene	0.001	0.001	90.5	36 - 137	
Dibenz(a,h)anthracene	0.001	0.001	96.1	39 - 129	
Fluoranthene	0.001	0.001	108	45 - 123	
Fluorene	0.001	0.001	98.0	41 - 118	
Indeno(1,2,3-cd)pyrene	0.001	0.001	101	39 - 129	
Naphthalene	0.001	0.001	76.4	26 - 111	
Phenanthrene	0.001	0.001	91.2	41 - 116	
Pyrene	0.001	0.001	91.2	32 - 136	

Quality Control Summary

Envirotest

Test: Semi-volatile Organic Compounds by Method 8270C-SIM Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04, -05, -06, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 8:31:00 PM Instrument ID: BNAMS3 Analyst: 228 Analytic Batch: WG391831 L372815

EPA ID: TN00003

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1. Mathedrauktholong	0.001	0.001	78.7	30 - 123	
1-Methylnaphthalene	0.001	0.001	78.8	29 - 116	
2-Methylnaphthalene	0.001	0.001	91.8	40 - 113	
Acenaphthene				36 - 115	
Acenaphthylene	0.001	0.001	86.4		
Anthracene	0.001	0.001	82.5	45 - 118	
Benzo(a)anthracene	0.001	0.001	81.0	36 - 129	
Benzo(a)pyrene	0.001	0.001	81.4	44 - 124	
Benzo(b)fluoranthene	0.001	0.001	86.6	43 - 126	
Benzo(g,h,i)perylene	0.001	0.001	91.9	39 - 128	
Benzo(k)fluoranthene	0.001	0.001	74.4	44 - 127	
Chrysene	0.001	0.001	81.7	36 - 137	
Dibenz(a,h)anthracene	0.001	0.001	84.0	39 - 129	
Fluoranthene	0.001	0.001	97.0	45 - 123	
Fluorene	0.001	0.001	87.0	41 - 118	
Indeno(1,2,3-cd)pyrene	0.001	0.001	89.7	39 - 129	
Naphthalene	0.001	0.001	74.5	26 - 111	
Phenanthrene	0.001	0.001	81.3	41 - 116	
Pyrene	0.001	0.001	81.5	32 - 136	

Quality Control Summary

Envirotest

Test: Semi-volatile Organic Compounds by Method 8270C-SIM Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04, -05, -06, -07, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/5/2008 8:31:00 PM Instrument ID: BNAMS3 Analyst: 228 Analytic Batch: WG391831

L372815

EPA ID: TN00003

	Spike		%		%	Control	%	Control
Analyte	-	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
1-Methylnaphthalene	0.001	0.001	82.9	0.001	78.7	30-123		32
2-Methylnaphthalene	0.001	0.001	86.8	0.001	78.8	29-116		31
Acenaphthene	0.001	0.001	98.1	0.001	91.8	40-113		25
Acenaphthylene	0.001	0.001	93.5	0.001	86.4	36-115		25
Anthracene	0.001	0.001	92.0	0.001	82.5	45-118	11	26
Benzo(a)anthracene	0.001	0.001	92.0	0.001	81.0	36-129	13	26
Benzo(a)pyrene	0.001	0.001	91.0	0.001	81.4	44-124	- 11	21
Benzo(b)fluoranthene	0.001	0.001	95.4	0.001	86.6	43-126	9.7	38
Benzo(g,h,i)perylene	0.001	0.001	101	0.001	91.9	39-128	-9.2	20
Benzo(k)fluoranthene	0.001	0.001	83.7	0.001	74.4	44-127	12	39
Chrysene	0.001	0.001	90.5	0.001	81.7	36-137	10	22
Dibenz(a,h)anthracene	0.001	0.001	96.1	0.001	84.0	39-129) 13	20
Fluoranthene	0.001	0.001	108	0.001	97.0	45-123	3 11	25
Fluorene	0.001	0.001	98.0	0.001	87.0	41-118	3 12	26
Indeno(1,2,3-cd)pyrene	0.001	0.001	101	0.001	89.7	39-129) 12	20
Naphthalene	0.001	0.001	76.4	0.001	74.5	26-111	2.5	32
Phenanthrene	0.001	0.001	91.2	0.001	81.3	41-116	5 11	25
Pyrene	0.001	0.001	91.2	0.001	81.5	32-136	5 11	22

Quality Control Summary

Envirotest

Test: Polychlorinated Biphenyls by Method 8082 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number:L372815-06, -07 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/3/2008 11:38:00 PM Instrument ID:SVGC24

Analyst:232 Analytic Batch:WG391767

 $\mathcal{L}_{\mathbf{r}}$

EPA ID: TN00003

L372815

	Method Dialik		
Analyte	CAS	PQL	MDL
		0.0005	.0.00016
4,4-DDD		<0.0005	<0.00016
4,4-DDE		< 0.0005	< 0.00016
4,4-DDT		< 0.0005	< 0.00016
Aldrin		< 0.0005	< 0.00016
Alpha BHC		< 0.0005	< 0.00016
alpha-Chlordane		< 0.0005	< 0.00003
Beta BHC		< 0.0005	<0.00016
Chlordane		< 0.0050	<0.00165
Chlorpyrifos		< 0.0007	< 0.00024
Delta BHC		< 0.0005	< 0.00016
Dieldrin		< 0.0005	<0.00016
Endosulfan I		< 0.0005	<0.00016
Endosulfan II		< 0.0005	< 0.00016
Endosulfan sulfate		< 0.0005	<0.00016
Endrin		< 0.0005	< 0.00016
Endrin aldehyde		< 0.0005	<0.00016
Endrin ketone		< 0.0005	< 0.00016
Gamma BHC		< 0.0005	< 0.00016
gamma-Chlordane		< 0.0005	< 0.00002
Heptachlor		< 0.0005	<0.00016
Heptachlor epoxide		< 0.0005	<0.00016
Hexachlorobenzene		< 0.0005	< 0.00016
Methoxychlor		< 0.0005	<0.00016
PCB 1016		< 0.0005	< 0.00016
PCB 1221		< 0.0005	< 0.00016
PCB 1232		< 0.0005	<0.00016
PCB 1242		< 0.0005	<0.00016
PCB 1248		< 0.0005	< 0.00016
PCB 1254		< 0.0005	< 0.00016
PCB 1260		< 0.0005	< 0.00016
Toxaphene		< 0.0100	<0.00330

Method Blank

Quality Control Summary for client sample(s) MW-1D, MW-2D

103 of 107

Laboratory Control Sample (LCS)

Tma

Control

Deserver

Quality Control Summary

Envirotest

Test: Polychlorinated Biphenyls by Method 8082 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L372815 Sample Number: L372815-01, -02, -03, -04, -05, -08 Sample Date: 10/31/2008 Extraction Date: 11/4/2008 Analysis Date: 11/4/2008 5:42:00 PM Instrument ID: SVGC23 Analyst: 298 Analytic Batch: WG391829

EPA ID: TN00003

L372815

	Method Diank		
Analyte	CAS	PQL	MDL
			0.0001.0
4,4-DDD		< 0.0005	< 0.00016
4,4-DDE		< 0.0005	< 0.00016
4,4-DDT		< 0.0005	<0.00016
Aldrin		< 0.0005	<0.00016
Alpha BHC		< 0.0005	< 0.00016
alpha-Chlordane		< 0.0005	< 0.00003
Beta BHC		< 0.0005	<0.00016
Chlordane		< 0.0050	<0.00165
Chlorpyrifos		< 0.0007	< 0.00024
Delta BHC		< 0.0005	< 0.00016
Dieldrin		< 0.0005	< 0.00016
Endosulfan I		< 0.0005	< 0.00016
Endosulfan II		< 0.0005	< 0.00016
Endosulfan sulfate		< 0.0005	< 0.00016
Endrin		< 0.0005	<0.00016
Endrin aldehyde		< 0.0005	< 0.00016
Endrin ketone		< 0.0005	<0.00016
Gamma BHC		< 0.0005	<0.00016
gamma-Chlordane		< 0.0005	< 0.00002
Heptachlor		< 0.0005	<0.00016
Heptachlor epoxide		< 0.0005	< 0.00016
Hexachlorobenzene		< 0.0005	< 0.00016
Methoxychlor		< 0.0005	< 0.00016
PCB 1016		< 0.0005	< 0.00016
PCB 1221		< 0.0005	< 0.00016
PCB 1232		< 0.0005	< 0.00016
PCB 1242		< 0.0005	< 0.00016
PCB 1248		< 0.0005	< 0.00016
PCB 1254		< 0.0005	< 0.00016
PCB 1260		< 0.0005	< 0.00016
Toxaphene		< 0.0100	<0.00330

Method Blank

Quality Control Summary for client sample(s) MW-1S, MW-2S, MW-3S, MW-4S, MW-5S, MW-3D

Truc

Laboratory Control Sample (LCS)

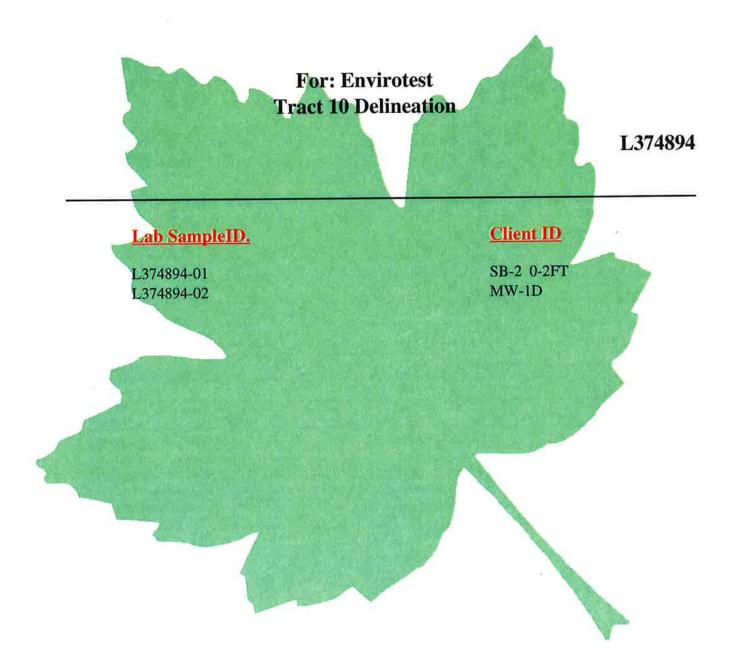
Decovert

Control

Environmental Science Corporation Quality Control Summary Envirotest Test: Polychlorinated Biphenyls by Method 8082 L372815 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L372815 Sample Number:L372815-06, -07 Sample Date: 10/31/2008 Extraction Date: 11/2/2008 Analysis Date: 11/3/2008 11:38:00 PM Instrument ID:SVGC24 Analyst:232 EPA ID: TN00003 Analytic Batch:WG391767

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control		Control	
Analyte	1	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
PCB 1260	0.500	0.368	73.6	0.585	117	37-142	46	39	J3


a fa

Environmental Science Corpo Quality Control Summary	oration
Envirotest	
Test: Polychlorinated Biphenyls by Method 8082	L372815
Matrix: Water - mg/L	
Project: Tract 10 Delineation	
Project No:Hou 08 1377	
Login No:L372815	
Sample Number:L372815-01, -02, -03, -04, -05, -08	
Sample Date: 10/31/2008	
Extraction Date: 11/4/2008	
Analysis Date:11/4/2008 5:42:00 PM	
Instrument ID:SVGC23	
Analyst:298	
Analytic Batch:WG391829	EPA ID: TN00003

	Spike	%			%	Control	% Control					
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier				
PCB 1260	0.500	0.410	82.0	0.476	95.2	37-142	15	39				

	Prepared by:	SCTENCE CORP.		B044 2	Phone (800) 767-5859 FAX (615) 758-5859		Actimute ENVTESTX (and use only) Templater and n S4300' P261472 Context 10 (2712)	Remarks/Contaminant Sample # (lab only)	6.342815-34	02		50	8		30		Temp	Other		The condition (lab y de calify in the second	ALCHARTER TOTAL
		K. Cp.						a Set of the set of th			の日本の			1 AL			Hq	Flow			225
	101		1			DH-	1mAfm04.00	28		N.				N.	X	þe.		щ		Samples returned via:	and the second second
C AND A	anna ann ann ann ann ann ann ann ann an			- 14499578	CI		mAlm0ə XT	明年 368	X	X	X	X	X			X				FedEx	UI
			S	voPre	1 dmA	- 1 []	MISHA4073	28AS	X	X	×	X	×	~	X	X			5		*C
Sector of the	Terzowniter Lood	VERG	CORNER.				dmA-JI 28(X	X	X	X				X					ALC: 410824
	EON	H-30	Section of the	Im00	s Zno	IN'S	98+854 97	11.11.11.12.13.13.13.13.13.13.13.13.13.13.13.13.13.	X	X	X .		X ;	< >		X			Ì	27	The Local Division
			d.com	N.	E		<u>- 2</u> 3	55	6	.6	+	-	ð Q	2		6				10	
			otestit	Ę	U0813		sults Needed		125	861	210	240	Ň	A.	X N N	Ţ				3	Variat
			monroe@envirolestItd.com	LG-Un-	Project # NVTESTX-HOU081377				R		1	+	+	õ	120					eived by: (Signature,	
mormation			nroe@	t i	et#		Email?		0	N	2	Z	2	10201	2121	- E - U	-			a py. (S	C
			ourm	City/State Collected	Lab Project	P.O.#	(p	f	1	1	1	1	1	1	1	Ì	- Other			Receive	4
Alternate Dilling			Email:	ਹੋਹੱ	—	F	T Be Notifie 200% 100%	Depth	1	1	1		1	[ater OT			0	
¥							Rush? (Lab MUST Be Notified) Same Day	nnee Uay	GW	GW	GW	GW	GW	GW	and and	GW	W - Drinking W				
			ľ		Client Project #. Hou 08 1377	Sile/Facility ID#:	Rush? (Lab M Same Day Next Day. Two Day	Comp/Grab	61210	N	И	z	¥	r	11		WasteWater D			Date: 10-3	4
Envirotest	3902 Braxton St. Houston,TX 77063		Report to: Matt Monroe	Project Description: Tract 10 Delineation	Phone: (713) 782-4411 FAX:	Collected by (pripe)	Collacted by/signature): mmenately Packed on Ice: N	Sample ID	MINT-1S	mW-25	MW-33	mul-US	MW-SS	mu-10	mi20	and the	*Matrix: SS - Soil GW - Groundwater WW - WasteWater DW - Drinking Water OT - O	Remarks:		Relinguished M: (Signature)	

Environmental Science Corporation Mount Juliet, TN

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

EST. 1970

Appendix A Laboratory Data Package Cover Page

This data package consists of:

- This signature page, the laboratory review checklist, and the following reportable data:
- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

William Mock Operations Manager Environmental Science Corp.

abo	rator	y Name: Environmental Science LR	C Date: 11/20/08				
_			poratory Job Number:L374894-01				
			p Batch Number(s): WG389036 TS				
# ¹		Description		Yes N	0 NA	NR ⁴	ER/
"		Chain-of-custody (C-O-C)					
11	OI	Did samples meet the laboratory's standard conditions of sam	ple acceptability upon receipt?	1			1
<u> </u>	01	Were all departures from standard conditions described in an	exception report?		1	1	
22	01	Sample and quality control (QC) identification		÷		1	
22	01	Are all field sample ID numbers cross-referenced to the labora	atory ID numbers?	1			+
		Are all laboratory ID numbers cross-referenced to the corresp	onding OC data?	J			1
3	OI	Test reports	ondning Qo dalar				
-	01	Were all samples prepared and analyzed within holding times	?	1			
- 1		Other than those results $<$ MQL, were all other raw values bra	1				
		Were calculations checked by a peer or supervisor?		1			
		Were all analyte identifications checked by a peer or supervis	or?	1			
		Were sample quantitation limits reported for all analytes not of	\checkmark				
		Were all results for soil and sediment samples reported on a d	1			1	
		Were % moisture (or solids) reported for all soil and sedimen	t samples?	1			
		If required for the project, TICs reported?			V	/	
4	0	Surrogate recovery data					
-	<u> </u>	Were surrogates added prior to extraction?			V	/	
		Were surrogate percent recoveries in all samples within the la	boratory QC limits?		V		1
5	OI	Test reports/summary forms for blank samples				_	
	W	Were appropriate type(s) of blanks analyzed?		1	_		+
		Were blanks analyzed at the appropriate frequency?		1			
		Were method blanks taken through the entire analytical proce	ess, including preparation and, if				
		applicable, cleanup procedures?		_	_	+	
		Were blank concentrations < MQL?	1	_	_	+-	
26	OI	Laboratory control samples (LCS):			_	+	
		Were all COCs included in the LCS?	1	_		+	
		Was each LCS taken through the entire analytical procedure,	V	-	-	+	
		Were LCSs analyzed at the required frequency?	1	-	_	+	
		Were LCS (and LCSD, if applicable) %Rs within the laborate	1	_	_	+	
		Does the detectability data document the laboratory's capabil					
		to calculate the SQLs?				1	+
_	_	Was the LCSD RPD within QC limits?			-	4	+
27	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data	a			1	+
		Were the project/method specified analytes included in the M				1	+
		Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laborator	v OC limits?	+		1	+
		Were MS/MSD RPDs within laboratory QC limits?	y ge mints.			1	T
R 8	OI	Analytical duplicate data					
10	01	Were appropriate analytical duplicates analyzed for each mat	rix?	1			
		Were analytical duplicates analyzed at the appropriate freque	ncv?	1			
		Were RPDs or relative standard deviations within the laborat	tory OC limits?				
29	01	Method quantitation limits (MQLs):					
		Are the MQLs for each method analyte included in the labor	atory data package?	\checkmark			
		Do the MQLs correspond to the concentration of the lowest	non-zero calibration standard?	1			
		Are unadjusted MQLs included in the laboratory data package	1				
R10	OI	Other problems/anomalies					
		Are all known problems/anomalies/special conditions noted	1				
		Were all necessary corrective actions performed for the repo	rted data?	\checkmark		_	
	1	Was applicable and available technology used to lower the S	OL minimize the matrix interference	1			

Items identified by the letter "R" must be included in the laboratory data package submitted in the TKRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
 = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Name: Environmental Science LRC Date: 11/20/08							
Project Name: Tract 10 Delineation Laboratory Job Number:L374894-01							
	_		ep Batch Number(s): WG389036 TS				
_				Yes N	o NA	NR ⁴	ER#
# ¹	A-	Description					
		Chain-of-custody (C-O-C)	ante accontability unan receint?	1	_	-	-
R1	01	Did samples meet the laboratory's standard conditions of sam	npie acceptability upon receipt?	-		-	-
		Were all departures from standard conditions described in an exception report?			_ √	-	<u> </u>
R2	OI	Sample and quality control (QC) identification			_		-
		Are all field sample ID numbers cross-referenced to the labor	ratory ID numbers?	V	_	-	-
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?		1	_	-	-
R3	IO	Test reports				-	-
		Were all samples prepared and analyzed within holding times	s?	1	_	-	-
		Other than those results < MQL, were all other raw values br	acketed by calibration standards?	1	_		⊢
		Were calculations checked by a peer or supervisor?			_	+	-
		Were all analyte identifications checked by a peer or supervise	sor?	1	_	4-	-
		Were sample quantitation limits reported for all analytes not	detected?	1	_		_
		Were all results for soil and sediment samples reported on a	dry weight basis?	1		-	-
		Were % moisture (or solids) reported for all soil and sedimer	nt samples?			_	
		If required for the project, TICs reported?				<u> </u>	
R4	0	Surrogate recovery data			_	_	1
		Were surrogates added prior to extraction?					
		Were surrogate percent recoveries in all samples within the l	aboratory QC limits?			_	
۲5	OI				_	_	
		Were appropriate type(s) of blanks analyzed?		1	_		
		Were blanks analyzed at the appropriate frequency?		1			
	[Were method blanks taken through the entire analytical proc	ess, including preparation and, if	1			
		applicable, cleanup procedures?				_	
		Were blank concentrations < MQL?				_	
R6	OI	Laboratory control samples (LCS):		-			
	1	Were all COCs included in the LCS?		1			
		Was each LCS taken through the entire analytical procedure	, including prep and cleanup steps?	1		_	1
		Were LCSs analyzed at the required frequency?		1			_
		Were LCS (and LCSD, if applicable) %Rs within the laboration	tory QC limits?	1			_
	1	Does the detectability data document the laboratory's capability	ility to detect the COCs at the MDL used	1			
		to calculate the SQLs?		V			_
		Was the LCSD RPD within QC limits?			-	1	
R7	01	Matrix spike (MS) and matrix spike duplicate (MSD) dat	ta				
		Were the project/method specified analytes included in the M	MS and MSD?		1		
		Were MS/MSD analyzed at the appropriate frequency?					
		Were MS (and MSD, if applicable) %Rs within the laborato	ry QC limits?		V		-
		Were MS/MSD RPDs within laboratory QC limits?				1	-
R8	OI	Analytical duplicate data					-
		Were appropriate analytical duplicates analyzed for each ma	itrix?	1		_	-
		Were analytical duplicates analyzed at the appropriate frequ	ency?	1		_	
		Were RPDs or relative standard deviations within the laboration	atory QC limits?	\checkmark			_
R9	OI	Method quantitation limits (MQLs):			_		
	1	Are the MOLs for each method analyte included in the labor	ratory data package?	1		_	-
		Do the MQLs correspond to the concentration of the lowest	non-zero calibration standard?	1			
	1	Are unadjusted MQLs included in the laboratory data packa	ge? ·	1			\perp
R10	01	Other problems/anomalies					
		Are all known problems/anomalies/special conditions noted	in this LRC and ER?				-
	1	Were all necessary corrective actions performed for the repo	orted data?	1			-
		Was applicable and available technology used to lower the	SQL minimize the matrix interference	1			
	1	affects on the sample results? Items identified by the letter "R" must be included in the laboratory		1 1			

Items identified by the letter "R" must be included in the labora nems identified by the fetter. K. must be included in the laboratory data package submitted in the letter "S" should be retained and made available upon request for the appropriate retention period.
 e organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 EP# = Evention Period Period Constraints and the second state of the second s

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5.

abo	orator	y Name:Environmental Science LRC	Date: 11/20/08					
-	_		oratory Job Number:L374894-01					
			p Batch Number(s): WG389357 TPHTX	(100	6			
# ¹		Description		Yes		NA	NR ⁴	ER#
#	A	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of samp	le accentability upon receint?	7				
81	01	Were all deportures from standard conditions described in an e	vcention report?	1				-
_		Were all departures from standard conditions described in an exception report?					_	
22	OI	Sample and quality control (QC) identification	to an ID anymhore?	7				
		Are all field sample ID numbers cross-referenced to the laboration	adva OC data?	× /	_			_
		Are all laboratory ID numbers cross-referenced to the correspondence	huing QC uata?	*		_		-
ય	OI	Test reports		7		-		
		Were all samples prepared and analyzed within holding times?	alerted by aplibration standards?	1		-		-
		Other than those results < MQL, were all other raw values brack	skeled by calibration standards?	V				-
		Were calculations checked by a peer or supervisor?	-2	J				-
		Were all analyte identifications checked by a peer or superviso	1: etected?			_		
		Were sample quantitation limits reported for all analytes not do	1		-		-	
		Were all results for soil and sediment samples reported on a dr	1					
		Were % moisture (or solids) reported for all soil and sediment	samples	·	-	1		
		If required for the project, TICs reported?				-		
R4 ()	0	Surrogate recovery data Were surrogates added prior to extraction?	J	-				
		Were surrogate percent recoveries in all samples within the lab	poratory OC limits?	J				
R5 OI	OI	Test reports/summary forms for blank samples						
6	101	Were appropriate type(s) of blanks analyzed?		1	_			1
		Were blanks analyzed at the appropriate frequency?		J				1
		Were method blanks taken through the entire analytical process	s including preparation and, if					1
		applicable, cleanup procedures?	s, moruaning proparation and, it	\checkmark				
		Were blank concentrations < MQL?			1			1
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		1				
		Was each LCS taken through the entire analytical procedure, i	ncluding prep and cleanup steps?	1				
		Were LCSs analyzed at the required frequency?		1		0		
		Were LCS (and LCSD, if applicable) %Rs within the laborato	ry QC limits?	1				
		Does the detectability data document the laboratory's capabili	ty to detect the COCs at the MDL used	1				1
	1	to calculate the SQLs?						
		Was the LCSD RPD within QC limits?		1				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data		11	_			
		Were the project/method specified analytes included in the M	S and MSD?			1		
		Were MS/MSD analyzed at the appropriate frequency?				1		-
		Were MS (and MSD, if applicable) %Rs within the laboratory	PQC limits?			1	_	-
		Were MS/MSD RPDs within laboratory QC limits?				1	-	+
R8	OI	Analytical duplicate data			_	1	-	+
		Were appropriate analytical duplicates analyzed for each matr	ix?	-		V	-	+-
		Were analytical duplicates analyzed at the appropriate frequer	icy?	<u> </u>	<u> </u>		-	+
		Were RPDs or relative standard deviations within the laborate	ory QC limits?	_			+	╋
R9	OI	Method quantitation limits (MQLs):	anterio 1 de esteres los atestos	1	-	-	-	┿
	1	Are the MQLs for each method analyte included in the labora	tory data package?	1		1-		+
	1	Do the MQLs correspond to the concentration of the lowest n	on-zero canoration standard?	17	-	-	1-	+
	-	Are unadjusted MQLs included in the laboratory data package	31	1	-	+		+
R10	OI	Other problems/anomalies	n this LDC and ED?	V	-	+		+
		Are all known problems/anomalies/special conditions noted in	1 uns LKC and EK?	V	-	-	1	+
		Were all necessary corrective actions performed for the report Was applicable and available technology used to lower the SO	N minimize the matrix interference		-	1	1	+
	1	I was applicable and available technology used to lower the SC	Sr munimize me man ix interference		1	1	1	1

mus items identified by the letter letter "S" should be retained and made available upon request for the appropriate retention period.

2. = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/20/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L374894
Reviewer Name: ESC Representative	Prep Batch Numbers: WG389357 TPHTX1006

Sample(s) SB-2 0-2FT were analyzed for TPH by Method TX1006

ER#: Description

1 The method blank contained target analytes above the method reporting limit.

NI 10.2892

Proje	aboratory Name:Environmental Science LRC Date: 11/20/08									
	ect Na		boratory Job Number:L374894-02							
CCVI.			ep Batch Number(s): WG391791 TPHT	K100	6					
# ¹		Description		Yes		NA ³	NR ⁴	ER#		
#	A	Chain-of-custody (C-O-C)								
	01	Did samples meet the laboratory's standard conditions of sam	mle accentability upon receint?		_	_	-	-		
1	OI	Were all departures from standard conditions described in an	exception report?	1		_				
			V		_		<u> </u>			
22	01	Sample and quality control (QC) identification	Sample and quality control (QC) identification							
		Are all field sample ID numbers cross-referenced to the labor	atory ID numbers?			_	-	-		
		Are all laboratory ID numbers cross-referenced to the corresp	onding QC data?		-	_		-		
3	OI	Test reports		1	_		-	-		
		Were all samples prepared and analyzed within holding times	if	1		_	-			
		Other than those results < MQL, were all other raw values brack	acketed by calibration standards?	V						
		Were calculations checked by a peer or supervisor?	2	1.		<u> </u>	-	-		
		Were all analyte identifications checked by a peer or supervis	detected?	1				-		
		Were sample quantitation limits reported for all analytes not	J	-	-	-				
		Were all results for soil and sediment samples reported on a d	V	-		-				
		Were % moisture (or solids) reported for all soil and sedimen	V I		J	-	-			
	0	If required for the project, TICs reported?								
	0	Surrogate recovery data Were surrogates added prior to extraction?	1							
		Were surrogate percent recoveries in all samples within the la	aboratory OC limits?	J						
	OI	Test reports/summary forms for blank samples								
	01	Were appropriate type(s) of blanks analyzed?		J						
		Were blanks analyzed at the appropriate frequency?		1						
		Were method blanks taken through the entire analytical proce	ess, including preparation and, if							
		applicable, cleanup procedures?			_					
		Were blank concentrations < MQL?			1			1		
R6	OI	Laboratory control samples (LCS):								
		Were all COCs included in the LCS?		1						
		Was each LCS taken through the entire analytical procedure,	including prep and cleanup steps?	1						
		Were LCSs analyzed at the required frequency?		1			_			
		Were LCS (and LCSD, if applicable) %Rs within the laborat	ory QC limits?	1	_	_	_	+		
		Does the detectability data document the laboratory's capability	lity to detect the COCs at the MDL used							
		to calculate the SQLs?		-		-		+		
		Was the LCSD RPD within QC limits?		1	_	-	-	+-		
27	OI	Matrix spike (MS) and matrix spike duplicate (MSD) dat				-	-	┢		
		Were the project/method specified analytes included in the M	AS and MSD?			V.		╋		
		Were MS/MSD analyzed at the appropriate frequency?	or OC limited			1	-	╈		
		Were MS (and MSD, if applicable) %Rs within the laborator	ry QC limits?		-	J		+		
	01	Were MS/MSD RPDs within laboratory QC limits?		-	-	 ⊻	1	+		
R8	01	Analytical duplicate data	e-i	1	-	V	+	╈		
		Were appropriate analytical duplicates analyzed for each man Were analytical duplicates analyzed at the appropriate freque		1	-	11	+	+		
		Were RPDs or relative standard deviations within the laborat		-	-	17	1	+		
29		Method quantitation limits (MQLs):	tory de mints:			1	1	+		
0	OI	Are the MQLs for each method analyte included in the labor	atory data nackage?	J				\top		
		Do the MQLs correspond to the concentration of the lowest	non-zero calibration standard?	V				T		
		Are unadjusted MQLs included in the laboratory data packag	ge?	V				T		
R10	OI	Other problems/anomalies	p					T		
		Are all known problems/anomalies/special conditions noted	in this LRC and ER?	J				T		
		Were all necessary corrective actions performed for the repo		V	1					
	1	Was applicable and available technology used to lower the S	SOL minimize the matrix interference	1				T		

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items id letter "S" should be retained and made available upon request for the appropriate retention period.
 = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Appendix A (cont'd): Laboratory Review Checklist: Exception Reports

Laboratory Name: Environmental Science Corp.	LRC Date: 11/20/2008
Project Name: Tract 10 Delineation	Laboratory Job Number: L374894
Reviewer Name: ESC Representative	Prep Batch Numbers: WG391791 TPHTX1006

Sample(s) MW-1D were analyzed for TPH by Method TX1006

ER#: Description

1 The method blank contained target analytes above the method reporting limit.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5658 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Matt Monroe Envirotest 3902 Braxton St.

Houston, TX 77063

Report Summary

Wednesday November 19, 2008

Report Number: L374894 Samples Received: 10/11/08 Client Project: Hou 08 1377

Description: Tract 10 Delineation

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use nave any questions regarding this data package, please do not nesitate to sall.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375, DW21704, ND - R-140 NJ - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Nark W.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 2 Samples Reported: 11/19/08 11:05 Printed: 11/19/08 13:23 Page 1 of 5

Representative

Beasley, ESC

Environmental Science Corp.						Mt. Jul (615) 1-800- Fax (6)	Jebanon Rd. Liet, TN 3712 758-5858 767-5859 L5) 758-5859 D. 62-081428 970	
	DEDODE	OF ANALY	STC					
Matt Monroe Envirotest 3902 Braxton St. Houston, TX 77063	REPORT	Or ANALI	515	Nove	ember	19, 2008		
Date Received : October 11,	2008			ESC	Samp	le∦: L	374894-01	
Description : Tract 10 Deline	eation			Site	ID	:		
Sample ID : SB-2 0-2FT				Prof	iect i	# : Hou	08 1377	
Collected By : M Monroe Collection Date : 10/10/08 12:30						C 189 - 535-5		
Parameter	Dry Result	MDL	RDL	Units	Q	Method	Date	Dil.
Total Solids	95.9			8		2540G	10/17/08	1
TNRCC Method 1006 - TPH		a .a.		Secondardes.		TX 1006	11/17/08	1
of all the balance	U	3.3	10.	mg/kg	B 3	TX 1006	11/17/08	1
C6 Aliphatics			3.6	1100				
C6-C8 Aliphatics	U	3.3	10.	mg/kg				1
C6-C8 Aliphatics C8-C10 Aliphatics	Ü	3.3	10.	mg/kg		TX 1006	11/17/08	1
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics	Ü 6.0	3.3 3.3	10.	mg/kg mg/kg	J	TX 1006 TX 1006	11/17/08 11/17/08	1
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics	0 6.0 U	3.3 3.3 3.3	10. 10. 10.	mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08	1 1 1
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics	U 6.0 U 16.	3.3 3.3 3.3 3.3	10. 10. 10. 10.	mg/kg mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08 11/17/08	1 1 1
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics C21-C35 Alphatics	U 6.0 U 16. 140	3.3 3.3 3.3 3.3 6.6	10. 10. 10. 10. 21.	mg/kg mg/kg mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08 11/17/08 11/17/08	1 1 1
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics C21-C35 Alphatics C7-C8 Aromatics (Toluene only)	U 6.0 U 16. 140 U	3.3 3.3 3.3 6.6 3.3	10. 10. 10. 21. 10.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08 11/17/08	1 1 1 1
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics C21-C35 Alphatics C7-C8 Aromatics (Toluene only) C8-C10 Aromatics	U 6.0 U 16. 140 U U	3.3 3.3 3.3 6.6 3.3 3.3	10. 10. 10. 21. 10.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08	111111111
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics C21-C35 Alphatics C7-C8 Aromatics (Toluene only) C8-C10 Aromatics C10-C12 Aromatics	U 6.0 U 16. 140 U U U U	3.3 3.3 3.3 6.3 3.3 6.3 3.3 3.3	10. 10. 10. 21. 10. 10. 10.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08	1111111111
C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics C21-C35 Alphatics C7-C8 Aromatics (Toluene only) C8-C10 Aromatics	U 6.0 U 16. 140 U U	3.3 3.3 3.3 6.6 3.3 3.3	10. 10. 10. 21. 10.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	J	TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006 TX 1006	11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08 11/17/08	111111111

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD = SQL(TRRP) RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/19/08 11:05 Printed: 11/19/08 13:23

Page 2 of 5

Environmental Science Corp.					12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859
DUIENCE CORF.					Tax I.D. 62-0814289
					Est. 1970
Matt Monroe Envirotest 3902 Braxton St.	REPOI	RT OF ANAL	YSIS	Novembe	r 19, 2008
Houston, TX 77063 Date Received : November 01, 24				ESC Sam	ple # : L374894-02
Description : Tract 10 Delines	ation			Site ID	
Sample ID : MW-1D				Project	# : Hou 08 1377
Collected By : M. Monroe Collection Date : 10/30/08 13:34				5	
Parameter	Result	MDL	RDL	Units Q	Method Date Dil.
TNRCC Method 1006 - TPH C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C12-C16 Aliphatics C16-C21 Aliphatics C21-C35 Alphatics C7-C8 Aromatics C10-C12 Aromatics C10-C12 Aromatics C12-C16 Aromatics C12-C16 Aromatics C12-C35 Aromatics	U U U U U U U U U U U U U U 4.0	0.61 0.61 0.61 0.61 1.2 0.61 0.61 0.61 0.61 0.61 0.61 1.2	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	TX 1006 11/17/08 1.85 TX 1006 11/17/08 1.85

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
RDL = Reported Detection Limit = LOQ = PQL = EQL = MQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 11/19/08 11:05 Printed: 11/19/08 13:23

Page 3 of 5

Attachment A List of Analytes with QC Qualifiers

1 1³-

.

Ξ.

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L374894-01	WG389357 WG389357	SAMP SAMP	C6 Aliphatics C10-C12 Aliphatics	R509026 R509026	ВЗ Ј
L374894-02	WG391791	SAMP	C21-C35 Aromatics	R528615	В

Page 4 of 5

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
В	(EPA) - The indicated compound was found in the associated method blank as well as the laboratory sample.
в3	(ESC) - The indicated compound was found in the associated method blank, but all reported samples were non-detect.
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.

TIC

ŝ, ĝ

 Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 5 of 5

Summary of Remarks For Samples Printed 11/19/08 at 13:23:35

TSR Signing Reports: 134 R5 - Desired TAT

-52

Client wants pH reported on all SS requesting metals per JB Arsenic H2O log method 6020

Sample: L374894-01 Account: ENVTESTX Received: 10/11/08 19:00 Due Date: 11/19/08 00:00 RPT Date: 11/19/08 11:05 Use extract from L369746-04 Sample: L374894-02 Account: ENVTESTX Received: 11/01/08 13:30 Due Date: 11/19/08 00:00 RPT Date: 11/19/08 11:05 Use extract from L372815-06

Environmental Science Corporation Quality Control Summary Envirotest Test: Total Solids by Method 2540G Matrix: Soil - mg/kg Project: Tract 10 Delineation Project No:Hou 08 1377 Login No:L374894 Sample Number:L374894-01 Sample Date: 10/10/2008

EPA ID: TN00003

	Method Blank	
Analyte	CAS	Results
Total Solids		0.000

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Total Solids	50.0	50.0	100	85 - 115	

Extraction Date: 10/16/2008

Analytic Batch:WG389036

Instrument ID:BAL Analyst:242

Analysis Date: 10/17/2008 3:40:00 PM

Environmental Science Corporation

Quality Control Summary

Envirotest

Test: Total Solids by Method 2540G Matrix: Soil - mg/kg Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L374894 Sample Number: L374894-01 Sample Date: 10/10/2008 Extraction Date: 10/16/2008 Analysis Date: 10/17/2008 3:40:00 PM Instrument ID: BAL Analyst: 242 Analytic Batch: WG389036 L374894

EPA ID: TN00003

Sample Duplicate L369746-03

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Total Solids	84.1	84.0	0.1	5	11

Environmental Science Corporation

Quality Control Summary

Envirotest

Test: **TPH by Method TX1006** Matrix: Soil - mg/kg Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L374894 Sample Number: L374894-01 Sample Date: 10/10/2008 Extraction Date: 10/17/2008 Analysis Date: 11/17/2008 Instrument ID: SVGC13

Analyst:287 Analytic Batch:WG389357

20

EPA ID: TN00003

L374894

Method Blank

Analyte	CAS	PQL	MDL
		25.0	0.07
C10-C12 Aliphatics		<25.0	<8.25
C10-C12 Aromatics		<25.0	<8.25
C12-C16 Aliphatics		<25.0	<8.25
C12-C16 Aromatics		<25.0	<8.25
C16-C21 Aliphatics		<10.0	<3.30
C16-C21 Aromatics		<25.0	<8.25
C21-C35 Alphatics		<20.0	<6.60
C21-C35 Aromatics		<25.0	<8.25
C6 Aliphatics		1630 B	1630
C6-C8 Aliphatics		<10.0	<3.30
C8-C10 Aliphatics		<10.0	<3.30
C8-C10 Aromatics		<10.0	<3.30

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %		Control Limits	Qualifiers
TX1006	1000	860)	86.0		60 - 140

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %		Control Limits	Qualifiers
TX1006	1000	881	l	88.1		60 - 140

Environmental Science Corporation

Quality Control Summary

Envirotest

Test: **TPH by Method TX1006** Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No: L374894 Sample Number: L374894-02 Sample Date: 10/10/2008 Extraction Date: 11/2/2008

Analysis Date:11/17/2008 Instrument ID:SVGC13 Analyst:287 Analytic Batch:WG391791

EPA ID: TN00003

Method Blank

<0.150	<0.0495
<0.150	<0.0495
<0.150	< 0.0495
<0.150	<0.0495
<1.00	< 0.330
<0.150	<0.0495
<2.00	<0.660
0.662 B	0.662
<1.00	< 0.330
<1.00	< 0.330
<1.00	< 0.330
<1.00	< 0.330
	<0.150 <0.150 <1.00 <0.150 <2.00 0.662 B <1.00 <1.00 <1.00

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TX1006	500	394	78.8		60 - 140

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TX1006	500	368	73.6		60 - 140

L374894

Environmental Science Corporation Quality Control Summary	
Envirotest	
Test: TPH by Method TX1006	L374894
Matrix: Soil - mg/kg	
Project: Tract 10 Delineation	
Project No:Hou 08 1377	
Login No:L374894	
Sample Number:L374894-01	
Sample Date: 10/10/2008	
Extraction Date: 10/17/2008	
Analysis Date:11/17/2008	
Instrument ID:SVGC13	
Analyst:287	
Analytic Batch: WG389357 EPA I	D: TN00003
Laboratory Control Sample/ Laboratory Control Sample Duplicate	

Analyte	LCS	% Rec	LCSD	% Rec	Control Limits	% Control Qualifier RPD Limits Qualifier

881

88.1

86.0

860

82.

•

÷

TX1006

2.4

60-140

20

Environmental Science Corporation Quality Control Summary Envirotest L374894 Test: TPH by Method TX1006 Matrix: Water - mg/L Project: Tract 10 Delineation Project No: Hou 08 1377 Login No:L374894 Sample Number:L374894-02 Sample Date: 10/10/2008 Extraction Date: 11/2/2008 Analysis Date: 11/17/2008 Instrument ID:SVGC13 Analyst:287 EPA ID: TN00003 Analytic Batch:WG391791

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	LCS	% Rec	LCSD	% Rec	Control Limits		Control Limits Qualifier
TX1006	394	78.8	368	73.6	60-140	6.8	20

Company Name/Address:		Alternat	nate billing li	te billing Information:			Analwsk	Analvsis/Container/Pres	r/Presen	ative		Chain of Custody
F.nvirntest		193									Prenared hv:	
								onin'n	AND D			
3007 Rraxton St						nŋ		No. olut	P		ENVIR	ENVIRONMENTAL
Houston, TX 77063							Her La	Alben (d			SCIENC	SCIENCE CORP.
						A .		isteni isteni	Second Second		12065 Le	12065 Lebanon Road
Reportor Marth Munner		Small t	mon m	Qenum	Email to: MMDANDO ENJMEN (+ dian	۲. ۲		inia	(P)	ALL .	Mr. Julier, TN 37122	TN 37122
Project (Trut 10 Del	10 Belineation	00	City/Sete	nd cho	X	T IP	agita Inde	14000icu 5.650			Phone (6 Phone (8	Phone (615) 758-5858 Phone (800) 767-5859
	dient Project #.		ESC Key:				[10.		F	14.68	FAX (6	FAX (615) 758-5859
Collected by: M. M. M. N. N.	Site/Facility ID#:		#0.4				500		12	61 M		
Collected by (signature):	Rush? (Lab MU	(Lab MUST Be Notified	(tified)	Date Besult	S Needed:	ź	17		7.1	483	Trendode INVIT	
1 mont	Next Day.		100%	Email	Vo XYes	1	48. (1.)	۲ می بر ار ا	10	M		
- Makedon Ice NY	Two Day			FAX?	No_Yes	5 G	レス	200	14			
Sample ID	Comp/Grab M		Depith	Date	Time	0	1 271	0 1	0		Remarks/Conterninent	Sample # (lab only)
1-0 1-25	Gray 3	50	30	12 C2 C1	100	5	い、	X	X			-00112700
21-8 - 25	_	7	Pr	11	0/11	r C						
1	11	4	12-02	4	1125	へ	Nox A		ik si			
5-0 2-25	4	4	20	- 1	0521	~		، متفادت المراجع			10-168ht27	
52-2 4-8	4	2	570		1235	7				1		
12-22 2-515	61 0	5	1224	11	1255	2	ik, : Signatur					
mul-45 ard	11 M		2.4	2	850	<u>>-</u>	900 T					
MW-45 12-11	4 61		12-11	5	505	5						
mw-45 18-20	4 60		18-20	3	210	2	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2445 2				
Matrix 85 - Soil/Solid GW - Groundwater WW - WasteWater	wind water WW - Was		DW - Drinking Water		OT-Other		16			hq	Te	Temp
Remarks: Ryder to 63	E7 '94E6827	518 267	6							Flow		Other
Relinquisted by (Signature)	Date: 12/14/08	Time:	12 E	red by: (Signatur	ature)	11-01-	20	Samples returned via	eturned via:	ASS.		
Reinquished by: (9	Date:	Hine:	Receim	Received by: (Signatu						a di		
Relinquished by: (Specify	Date:	Time:	N.		y (Signatu			1		160	8	
					DOM: NOT							21 of 23

Envirotest												Page Lot 2
3902 Braxton St. Houston,TX 77063							1 1 2 3 3 7 1 9				Prepared by:	ued by: ENVIRONMENTAL
Report to: Matt Monroe		Email:		nroe@env	mmonroe@envirotestltd.com	EO		1185	瑞興		<u> </u>	SCIENCE CORP.
Project Description: Tract 10 Delineation		ł	City/State Collected	Fulst	ALVO		allen	a a a a a a a a a a a a a a a a a a a			ω ; 	B044
Phone: (713) 782-4411 FAX:	Cliant Projact ≇. Ho∎ 08 1377		ENV ENV	ect# TESTX-H	ab Project # ENVTESTX-HOU081377		Ltcs	-Amp				Phone (800) 767-5859 FAX (615) 758-5859
Colected ov (pring	Sile/Feality ID#		P.O.#					TTTHE				
And And	Bursh? (Lab M Same Day Next Day	MUST	5e Notified) 200% 100%	Date Result	Results Needed	o z	dmA-JI 28	MISHA40	mAlm09 X			
Sample ID	Three Day Comp/Grab	Three Dey	.25% Depth	FAX7 _ No	rime	र मुख्य स्ट्रि	SV808	The Repairs of	8 8 A	a sugar	Remarks/Conterninent	taninant Sampla# (lab only)
S LI VILL	Stad	GW	1	10-34	1255	6	X	XX				Series
mW -25	W	GW	1	И	811		X	X				
MW -35	3	GW	1	2	1215	<u>9</u> 0	X	X				
Sh- MW	22	GW GW		3 3	1221	2 0	× ×	X			-	
mulan	rr 17	GW	1	10-0201	1334	6	X				1234894	4.02-55
mu-20	41	GW GW	11	N Inzi-izè	1455	6 6	XX					
ALL ALL		GW				6	X		K			
Matrix: SS - Soil GW - Groundwater WW - WasteWater DW - Drinking Water	- WasteWater D	W - Drinking Wel	ar OT-Othe							Hq	Ţ	Temp
Remarks:	3									Flow	0	Other
Relinguished K. (Signature)	Date:	Time	Receiv	Caceived by: (Signature)		22	31-0		Samples returned via. FadEx [] Courtler		JUPS 15wh	

.

Contraction of the

Cetta:

(jeg

loinquehed b

2 of 2

1374814

Jonah Huckabay

From: Sent: To: Subject: Mark Beasley Thursday, November 13, 2008 9:05 AM Login *ENVTESTX* relogs

Relog the following samples as R5 due 11/19, transfer TS results:

L369746-04 for TPHTX1006, TS, QCTX L372815-06 for TPHTX1006, QCTX

Log these under the same L#.

Thanks Mark Beasley Environmental Science Corp Phone: 800-767-5859 ext 176 Email: mbeasley@envsci.com

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

June 03, 2021

Mike Marcon InControl Technologies 14731 Pebble Bend Drive Houston, TX 77068

Work Order: **HS21051431**

Laboratory Results for: **N. Velasco Street**

Dear Mike Marcon,

ALS Environmental received 8 sample(s) on May 27, 2021 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Sernadette Fini

Generated By: JUMOKE.LAWAL Bernadette A. Fini Project Manager

ALS Houston, US

Client:	InControl Technologies	
Project:	N. Velasco Street	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS21051431	i ackage oover i age

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), andb) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

ALS Houston, US

Client:	InControl Technologies	
Project:	N. Velasco Street	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS21051431	i ackage cover i age
Rel	ease Statement: I am responsible for the release of this laboratory data package	e. This laboratory is

Date: 03-Jun-21

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

ernadite

Bernadette A. Fini Project Manager

		Laboratory Review Check	list: Reportable Data	l						
Labo	ratory	Name: ALS Laboratory Group	LRC Date: 06/03/20	021						
Proje	ct Nan	ne: N. Velasco Street	Laboratory Job Num							
Revie	ewer N	ame: Bernadette Fini	Prep Batch Number(s)				9,166438	,166474		
#1	A ²	Description	• · · · · ·	Yes	No	NA ³	NR ⁴	ER# ⁵		
R1	OI	Chain-of-custody (C-O-C)								
		Did samples meet the laboratory's standard conditions of s	ample acceptability	•••						
		upon receipt?		X						
R2	OI	Were all departures from standard conditions described in	an exception report?	Х						
K2	01	Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the lat	oratory ID numbers?	Х						
		Are all laboratory ID numbers cross-referenced to the corre		X						
R3	OI	Test reports		Λ						
10	01	Were all samples prepared and analyzed within holding tin	nes?	Х						
		Other than those results < MQL, were all other raw values						-		
		calibration standards?		Х						
		Were calculations checked by a peer or supervisor?		Х						
		Were all analyte identifications checked by a peer or super	visor?	Х						
		Were sample detection limits reported for all analytes not of	letected?	Х						
		Were all results for soil and sediment samples reported on	a dry weight basis?			Х				
		Were % moisture (or solids) reported for all soil and sedim				Х				
		Were bulk soils/solids samples for volatile analysis extract	ed with methanol per							
		SW-846 Method 5035?			X X					
E (If required for the project, TICs reported?				X				
R4	0	Surrogate recovery data	v							
		Were surrogates added prior to extraction?	Х							
		Were surrogate percent recoveries in all samples within the limits?	e laboratory QC	Х						
R5	OI	Test reports/summary forms for blank samples	Λ							
K5	01	Were appropriate type(s) of blanks analyzed?		Х						
		Were blanks analyzed at the appropriate frequency?		X				-		
		Were method blanks taken through the entire analytical pro-	ocess, including					1		
		preparation and, if applicable, cleanup procedures?	, 6	Х						
		Were blank concentrations < MQL?	Х							
R6	OI	Laboratory control samples (LCS):								
		Were all COCs included in the LCS?		Х						
		Was each LCS taken through the entire analytical procedure	re, including prep and							
		cleanup steps?		X						
		Were LCSs analyzed at the required frequency?	enterne OC linuite?	X X						
		Were LCS (and LCSD, if applicable) %Rs within the labor Does the detectability data document the laboratory's capa		Λ						
		COCs at the MDL used to calculate the SDLs?	Unity to detect the	Х						
		Was the LCSD RPD within QC limits?		X				+		
R 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) d	ata							
		Were the project/method specified analytes included in the		Х						
		Were MS/MSD analyzed at the appropriate frequency?		Х						
		Were MS (and MSD, if applicable) %Rs within the laborat	ory QC limits?		Х			1		
		Were MS/MSD RPDs within laboratory QC limits?		Х						
R8	OI	Analytical duplicate data								
		Were appropriate analytical duplicates analyzed for each n				X				
		Were analytical duplicates analyzed at the appropriate freq				X				
DO	OI	Were RPDs or relative standard deviations within the labor	atory QC limits?			Х				
R9		Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory	oratory data nackaga?	Х						
	-	Do the MQLs for each method analyte included in the lab		Λ						
		standard?		Х						
		Are unadjusted MQLs and DCSs included in the laboratory	y data package?	X	1			1		
R10	OI	Other problems/anomalies								
		Are all known problems/anomalies/special conditions note	d in this LRC and							
		ER?		Х						
		Were all necessary corrective actions performed for the rep		Х						
		Was applicable and available technology used to lower the	SDL and minimize							
		the matrix interference affects on the sample results?		Х						
		Is the laboratory NELAC-accredited under the Texas Labo		37						
		the analytes, matrices and methods associated with this lab	oratory data package?	Х		1	1			

Project N	 ame: N. Velasco Street Name: Bernadette Fini Description Initial calibration (ICAL) Were response factors and/or relative response factors for ea limits? Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest stacalculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an approstandard? Initial and continuing calibration verification (ICCV and 	ised for all analytes? andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	ber: HS			6438,1664	474 ER#
Reviewer #1 A S1 O S2 O S3 O	Name: Bernadette Fini 2 Description 4 Initial calibration (ICAL) Were response factors and/or relative response factors for ea limits? Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest state calculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an approxistandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	Prep Batch Number(s): ach analyte within QC used for all analytes? andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	166350 Yes X	,166351,	166389,16		
#1 A S1 O S1 O S2 O S3 O	 Description Initial calibration (ICAL) Were response factors and/or relative response factors for ea limits? Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest statical calculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an apprositant standard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required QC lir Internal standards (IS): 	ach analyte within QC used for all analytes? andard used to opriate second source d CCV) and d-required QC limits? morganic CCB < MDL? ng?	Yes X				
S1 0 S1 0 S2 0 S2 0 S3 0	 Initial calibration (ICAL) Were response factors and/or relative response factors for ealimits? Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest stacalculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an approstandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method. Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required QC lir Internal standards (IS): 	ised for all analytes? andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	X X X X X X X X X X X X				
S2 0 S3 0	 Were response factors and/or relative response factors for ealimits? Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest stacalculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an approstandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required QC lin Internal standards (IS): 	ised for all analytes? andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	X X X X X X X X X X				
83 0	limits? Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest state calculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an approxistandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required QC lin Internal standards (IS):	ised for all analytes? andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	X X X X X X X X X X				
83 0	 Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method u Were all points generated between the lowest and highest stacalculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an apprositant of the initial calibration curve been verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required QC lin Internal standards (IS): 	andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	X X X X X X X X X X				
83 0	Was the number of standards recommended in the method u Were all points generated between the lowest and highest state calculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an apprositandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method. Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method-required QC lin Internal standards (IS):	andard used to opriate second source d CCV) and d-required QC limits? norganic CCB < MDL? ng?	X X X X X X X				
83 0	 calculate the curve? Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an apprositandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method. Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS): 	d CCV) and d-required QC limits? horganic CCB < MDL?	X X X X X X				
83 0	Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an apprositandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	d CCV) and d-required QC limits? torganic CCB < MDL? ng?	X X X X X X				
83 0	Has the initial calibration curve been verified using an apprositandard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method. Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	d CCV) and d-required QC limits? torganic CCB < MDL? ng?	X X X X				
83 0	standard? Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method. Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	d CCV) and d-required QC limits? torganic CCB < MDL? ng?	X X X				
83 0	Initial and continuing calibration verification (ICCV and continuing calibration blank (CCB)Was the CCV analyzed at the method-required frequency?Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte?Was the absolute value of the analyte concentration in the in Mass spectral tuning:Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	d-required QC limits? norganic CCB < MDL? ng?	X X X				
83 0	continuing calibration blank (CCB) Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	d-required QC limits? norganic CCB < MDL? ng?	X X				
83 0	Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lir Internal standards (IS):	norganic CCB < MDL? ng?	X X				
	Were percent differences for each analyte within the method Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lin Internal standards (IS):	norganic CCB < MDL? ng?	X X				
	Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tunin Were ion abundance data within the method-required QC line Internal standards (IS):	norganic CCB < MDL? ng?	Х				
	Was the absolute value of the analyte concentration in the in Mass spectral tuning: Was the appropriate compound for the method used for tunin Were ion abundance data within the method-required QC lin Internal standards (IS):	ng?					
	Mass spectral tuning: Was the appropriate compound for the method used for tunin Were ion abundance data within the method-required QC line Internal standards (IS):	ng?	Λ				
	Was the appropriate compound for the method used for tuni Were ion abundance data within the method-required QC lin Internal standards (IS):						
<u>\$4</u> 0	Were ion abundance data within the method-required QC lin Internal standards (IS):		Х				
S4 C	Internal standards (IS):	mits?	X X				
	Were IS area counts and refension times within the method-	required OC limits?	Х				
	Raw data (NELAC section 1 appendix A glossary, and sect	Λ					
S5 0							
	Were the raw data (for example, chromatograms, spectral da	ata) reviewed by an					
	analyst?		Х				
	Were data associated with manual integrations flagged on th	ne raw data?	Х				
S6 O	Dual column confirmation						
	Did dual column confirmation results meet the method-requ	iired QC?			Х		
S7 O	Tentatively identified compounds (TICs):						
	If TICs were requested, were the mass spectra and TIC data	subject to appropriate					
	checks?				Х		
S8 I	Interference Check Sample (ICS) results:						
	Were percent recoveries within method QC limits?		Х				
S9 I	Serial dilutions, post digestion spikes, and method of star						
	Were percent differences, recoveries, and the linearity with specified in the method?	in the QC limits	Х				
S10 O	*		Λ				
510 0	Was a MDL study performed for each reported analyte?		Х				
	Is the MDL either adjusted or supported by the analysis of E	00809	Х				
S11 0		0003:	Λ				
	Was the laboratory's performance acceptable on the applicat	ble proficiency tests or					
	evaluation studies?	- r	Х				
S12 O							
	Are all standards used in the analyses NIST-traceable or obt	tained from other					
	appropriate sources?		Х				
S13 O	Compound/analyte identification procedures						
	Are the procedures for compound/analyte identification doc	umented?	Х				
S14 O							
	Was DOC conducted consistent with NELAC Chapter 5C or		Х				
	Is documentation of the analyst's competency up-to-date and		Х				
	Verification/validation documentation for methods (NEL	LAC Chap 5 or					
S15 O		· · · · · · · · · · · · · · · · · · ·					
	Are all the methods used to generate the data documented, v	verified, and validated,	37				
	where applicable?		Х				
S16 O			v				
omo identif	Are laboratory SOPs current and on file for each method per		X	moidentif	ind by the lat	Hor "Q" above	
	ed by the letter "R" must be included in the laboratory data package submitted made available upon request for the appropriate retention period.	ed in the TRRP-required rep	unus). Ite	ans identif	ieu by the le	uer o snou	nu ne

Laboratory Review Checklist: Exception Reports								
Labor	Laboratory Name: ALS Laboratory Group LRC Date: 06/03/2021							
Projec	et Name: N. Velasco Street	Laboratory Job Number: HS21051431						
Reviewer Name: Bernadette FiniPrep Batch Number(s): 166350,166351,166389,166438,1664								
ER# ⁵	Description							
Batch 166350, Dissolved Metals Method SW6020, sample HS21050978-01, MS and MSD were performed on unrelated sample Batch 166350, Dissolved Metals Method SW6020, sample HS21050984-04, MSD was performed on unrelated sample								
retained O = Orga NA = No	ntified by the letter "R" must be included in the laboratory data package sul and made available upon request for the appropriate retention period. anic Analyses; I = Inorganic Analyses (and general chemistry, when applica t Applicable; t Reviewed;	omitted in the TRRP-required report(s). Items identified by the letter "S" should be ble);						

R# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Date: 03-Jun-21

Client:InControl TechnologiesProject:N. Velasco StreetWork Order:HS21051431

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS21051431-01	MW-1S	Water		26-May-2021 14:36	27-May-2021 14:18	
HS21051431-02	MW-3S	Water		26-May-2021 13:16	27-May-2021 14:18	
HS21051431-03	MW-4S	Water		26-May-2021 15:31	27-May-2021 14:18	
HS21051431-04	MW-1D	Water		26-May-2021 16:01	27-May-2021 14:18	
HS21051431-05	MW-2D	Water		26-May-2021 13:11	27-May-2021 14:18	
HS21051431-06	MW-3D	Water		26-May-2021 14:11	27-May-2021 14:18	
HS21051431-07	MW-2D (Dissolved)	Water		26-May-2021 13:11	27-May-2021 14:18	
HS21051431-08	Trip Blank	Water	CG-031621 -202	26-May-2021 00:00	27-May-2021 14:18	

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-1S	Lab ID:HS21051431-01
Collection Date:	26-May-2021 14:36	Matrix:Water

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
LOW-LEVEL TEXAS TPH BY TX100	5	Metho	d:TX1005		Prep:TX100	5PR / 28-May-202	1 Analyst: MBG
nC6 to nC12	U		0.20	0.50	mg/L	1	31-May-2021 14:32
>nC12 to nC28	U		0.20	0.50	mg/L	1	31-May-2021 14:32
>nC28 to nC35	U		0.20	0.50	mg/L	1	31-May-2021 14:32
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	31-May-2021 14:32
Surr: 2-Fluorobiphenyl	86.9			70-130	%REC	1	31-May-2021 14:32
Surr: Trifluoromethyl benzene	96.5			70-130	%REC	1	31-May-2021 14:32
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW301	0A / 01-Jun-2021	Analyst: JC
Arsenic	0.00188	J	0.000400	0.00200	mg/L	1	02-Jun-2021 22:13
Barium	0.0748		0.00190	0.00400	mg/L	1	02-Jun-2021 22:13
Cadmium	0.00137	J	0.000200	0.00200	mg/L	1	02-Jun-2021 22:13
Chromium	0.000804	J	0.000400	0.00400	mg/L	1	02-Jun-2021 22:13
Lead	0.00976		0.000600	0.00200	mg/L	1	02-Jun-2021 22:13
Selenium	0.00486		0.00110	0.00200	mg/L	1	02-Jun-2021 22:13
Silver	U		0.000200	0.00200	mg/L	1	02-Jun-2021 22:13
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW747	'0A / 02-Jun-2021	Analyst: MSC
Mercury	U		0.0000300	0.000200	mg/L	1	02-Jun-2021 13:52

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-3S	Lab ID:HS21051431-02
Collection Date:	26-May-2021 13:16	Matrix:Water

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
LOW-LEVEL TEXAS TPH BY TX10	05	Metho	d:TX1005		Prep:TX100	5PR / 28-May-202	1 Analyst: MBG
nC6 to nC12	U		0.20	0.50	mg/L	1	31-May-2021 21:24
>nC12 to nC28	U		0.20	0.50	mg/L	1	31-May-2021 21:24
>nC28 to nC35	U		0.20	0.50	mg/L	1	31-May-2021 21:24
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	31-May-2021 21:24
Surr: 2-Fluorobiphenyl	78.8			70-130	%REC	1	31-May-2021 21:24
Surr: Trifluoromethyl benzene	88.7			70-130	%REC	1	31-May-2021 21:24
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW301	0A / 01-Jun-2021	Analyst: JC
Arsenic	0.00399		0.000400	0.00200	mg/L	1	02-Jun-2021 22:27
Barium	0.279		0.00190	0.00400	mg/L	1	02-Jun-2021 22:27
Cadmium	0.000744	J	0.000200	0.00200	mg/L	1	02-Jun-2021 22:27
Chromium	U		0.000400	0.00400	mg/L	1	02-Jun-2021 22:27
Lead	0.00321		0.000600	0.00200	mg/L	1	02-Jun-2021 22:27
Selenium	0.00192	J	0.00110	0.00200	mg/L	1	02-Jun-2021 22:27
Silver	U		0.000200	0.00200	mg/L	1	02-Jun-2021 22:27
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW747	0A / 02-Jun-2021	Analyst: MSC
Mercury	U		0.0000300	0.000200	mg/L	1	02-Jun-2021 14:19

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-4S	Lab ID:HS21051431-03
Collection Date:	26-May-2021 15:31	Matrix:Water

ANALYSES	RESULT	QUAL SDL	MQL	DILU UNITS FAC	
LOW-LEVEL TEXAS TPH BY TX1005		Method:TX1005		Prep:TX1005PR / 28-Ma	y-2021 Analyst: MBG
nC6 to nC12	U	0.20	0.50	mg/L 1	31-May-2021 21:53
>nC12 to nC28	U	0.20	0.50	mg/L 1	31-May-2021 21:53
>nC28 to nC35	U	0.20	0.50	mg/L 1	31-May-2021 21:53
Total Petroleum Hydrocarbon	U	0.20	0.50	mg/L 1	31-May-2021 21:53
Surr: 2-Fluorobiphenyl	78.1		70-130	%REC 1	31-May-2021 21:53
Surr: Trifluoromethyl benzene	90.8		70-130	%REC 1	31-May-2021 21:53
ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010A / 01-Jun-	2021 Analyst: JC
Arsenic	0.00412	0.000400	0.00200	mg/L 1	02-Jun-2021 22:29
Barium	0.467	0.00190	0.00400	mg/L 1	02-Jun-2021 22:29
Cadmium	U	0.000200	0.00200	mg/L 1	02-Jun-2021 22:29
Chromium	U	0.000400	0.00400	mg/L 1	02-Jun-2021 22:29
Lead	0.00236	0.000600	0.00200	mg/L 1	02-Jun-2021 22:29
Selenium	U	0.00110	0.00200	mg/L 1	02-Jun-2021 22:29
Silver	U	0.000200	0.00200	mg/L 1	02-Jun-2021 22:29
MERCURY BY SW7470A		Method:SW7470A		Prep:SW7470A / 02-Jun	2021 Analyst: MSC
Mercury	U	0.0000300	0.000200	mg/L 1	02-Jun-2021 14:21

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-1D	Lab ID:HS21051431-04
Collection Date:	26-May-2021 16:01	Matrix:Water

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
LOW-LEVEL TEXAS TPH BY TX1	005	Method	:TX1005		Prep:TX1005PF	R / 28-May-202	1 Analyst: MBG
nC6 to nC12	U		0.20	0.50	mg/L	1	31-May-2021 22:23
>nC12 to nC28	U		0.20	0.50	mg/L	1	31-May-2021 22:23
>nC28 to nC35	U		0.20	0.50	mg/L	1	31-May-2021 22:23
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	31-May-2021 22:23
Surr: 2-Fluorobiphenyl	89.8			70-130	%REC	1	31-May-2021 22:23
Surr: Trifluoromethyl benzene	95.5			70-130	%REC	1	31-May-2021 22:23
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010A	/ 01-Jun-2021	Analyst: JC
Arsenic	0.000493	J	0.000400	0.00200	mg/L	1	02-Jun-2021 22:31
Barium	0.0644		0.00190	0.00400	mg/L	1	02-Jun-2021 22:31
Cadmium	U		0.000200	0.00200	mg/L	1	02-Jun-2021 22:31
Chromium	0.00405		0.000400	0.00400	mg/L	1	02-Jun-2021 22:31
Lead	U		0.000600	0.00200	mg/L	1	02-Jun-2021 22:31
Selenium	0.0172		0.00110	0.00200	mg/L	1	02-Jun-2021 22:31
Silver	U		0.000200	0.00200	mg/L	1	02-Jun-2021 22:31
MERCURY BY SW7470A		Method:	SW7470A		Prep:SW7470A	/ 02-Jun-2021	Analyst: MSC
Mercury	U		0.0000300	0.000200	mg/L	1	02-Jun-2021 14:38

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-2D	Lab ID:HS21051431-05
Collection Date:	26-May-2021 13:11	Matrix:Water

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	I DATE ANALYZED
LOW-LEVEL TEXAS TPH BY TX1	005	Metho	d:TX1005		Prep:TX100	5PR / 28-May-202	21 Analyst: MBG
nC6 to nC12	U		0.20	0.50	mg/L	1	31-May-2021 22:52
>nC12 to nC28	U		0.20	0.50	mg/L	1	31-May-2021 22:52
>nC28 to nC35	U		0.20	0.50	mg/L	1	31-May-2021 22:52
Total Petroleum Hydrocarbon	U		0.20	0.50	mg/L	1	31-May-2021 22:52
Surr: 2-Fluorobiphenyl	83.6			70-130	%REC	1	31-May-2021 22:52
Surr: Trifluoromethyl benzene	91.5			70-130	%REC	1	31-May-2021 22:52
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW30	10A / 01-Jun-202	Analyst: JC
Arsenic	0.00314		0.000400	0.00200	mg/L	1	02-Jun-2021 22:33
Barium	0.0457		0.00190	0.00400	mg/L	1	02-Jun-2021 22:33
Cadmium	U		0.000200	0.00200	mg/L	1	02-Jun-2021 22:33
Chromium	0.000472	J	0.000400	0.00400	mg/L	1	02-Jun-2021 22:33
Lead	0.000645	J	0.000600	0.00200	mg/L	1	02-Jun-2021 22:33
Selenium	0.00113	J	0.00110	0.00200	mg/L	1	02-Jun-2021 22:33
Silver	U		0.000200	0.00200	mg/L	1	02-Jun-2021 22:33
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW74	70A / 02-Jun-2021	Analyst: MSC
Mercury	U		0.0000300	0.000200	mg/L	1	02-Jun-2021 14:40

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-3D	Lab ID:HS21051431-06
Collection Date:	26-May-2021 14:11	Matrix:Water

ANALYSES	RESULT	QUAL SDL	MQL		DILUTION FACTOR A	DATE NALYZED
LOW-LEVEL TEXAS TPH BY TX1005		Method:TX1005		Prep:TX1005PR /	28-May-2021	Analyst: MBG
nC6 to nC12	U	0.20	0.50	mg/L	1 31-1	/lay-2021 23:21
>nC12 to nC28	U	0.20	0.50	mg/L	1 31-1	/lay-2021 23:21
>nC28 to nC35	U	0.20	0.50	mg/L	1 31-M	/lay-2021 23:21
Total Petroleum Hydrocarbon	U	0.20	0.50	mg/L	1 31-M	/lay-2021 23:21
Surr: 2-Fluorobiphenyl	86.1		70-130	%REC	1 31-1	May-2021 23:21
Surr: Trifluoromethyl benzene	95.0		70-130	%REC	1 31-1	May-2021 23:21
ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010A / 0)1-Jun-2021	Analyst: JC
Arsenic	0.00312	0.000400	0.00200	mg/L	1 02-	Jun-2021 22:35
Barium	0.0380	0.00190	0.00400	mg/L	1 02-	Jun-2021 22:35
Cadmium	U	0.000200	0.00200	mg/L	1 02-	Jun-2021 22:35
Chromium	U	0.000400	0.00400	mg/L	1 02-	Jun-2021 22:35
Lead	U	0.000600	0.00200	mg/L	1 02-	Jun-2021 22:35
Selenium	U	0.00110	0.00200	mg/L	1 02-	Jun-2021 22:35
Silver	U	0.000200	0.00200	mg/L	1 02-	Jun-2021 22:35
MERCURY BY SW7470A		Method:SW7470A		Prep:SW7470A / 0)2-Jun-2021	Analyst: MSC
Mercury	U	0.0000300	0.000200	mg/L	1 02-	Jun-2021 14:41

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	MW-2D (Dissolved)	Lab ID:HS21051431-07
Collection Date:	26-May-2021 13:11	Matrix:Water

ANALYSES	RESULT QUA	AL SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS BY SW6020A	Method:SV	W6020A (dissolved)		Prep:SW3010A	A / 28-May-2021	Analyst: JHD
Arsenic	0.00302	0.000400	0.00200	mg/L	1	28-May-2021 20:36
Barium	0.0462	0.00190	0.00400	mg/L	1	28-May-2021 20:36
Cadmium	U	0.000200	0.00200	mg/L	1	28-May-2021 20:36
Chromium	U	0.000400	0.00400	mg/L	1	28-May-2021 20:36
Lead	U	0.000600	0.00200	mg/L	1	28-May-2021 20:36
Selenium	0.00205	0.00110	0.00200	mg/L	1	28-May-2021 20:36
Silver	U	0.000200	0.00200	mg/L	1	28-May-2021 20:36
DISSOLVED MERCURY BY SW74704	A Method:S	N7470A (dissolved)		Prep:SW7470	A / 02-Jun-2021	Analyst: MSC
Mercury	0.0000330	J 0.0000300	0.000200	mg/L	1	02-Jun-2021 16:31

Client:	InControl Technologies	ANALYTICAL REPORT
Project:	N. Velasco Street	WorkOrder:HS21051431
Sample ID:	Trip Blank	Lab ID:HS21051431-08
Collection Date:	26-May-2021 00:00	Matrix:Water

ANALYSES	RESULT	QUAL SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
LOW-LEVEL TEXAS TPH BY TX1005		Method:TX1005		Prep:TX100	5PR / 28-May-202	1 Analyst: MBG
nC6 to nC12	U	0.20	0.50	mg/L	1	31-May-2021 23:51
>nC12 to nC28	U	0.20	0.50	mg/L	1	31-May-2021 23:51
>nC28 to nC35	U	0.20	0.50	mg/L	1	31-May-2021 23:51
Total Petroleum Hydrocarbon	U	0.20	0.50	mg/L	1	31-May-2021 23:51
Surr: 2-Fluorobiphenyl	89.7		70-130	%REC	1	31-May-2021 23:51
Surr: Trifluoromethyl benzene	96.3		70-130	%REC	1	31-May-2021 23:51

Weight / Prep Log

InControl Technologies Client: N. Velasco Street Project: WorkOrder: HS21051431 Batch ID: 166350 Start Date: 28 May 2021 10:30 End Date: 28 May 2021 14:30 Method: DISS METALS PREP - WATER - SW3010A Prep Code: 3010A DISS Sample Final Prep Container Wt/Vol Factor Sample ID Volume 10 (mL) 10 (mL) HS21051431-07 1 120 plastic HNO3 Batch ID: 166351 Start Date: 28 May 2021 12:05 End Date: 28 May 2021 12:50 Method: TX 1005 PREP Prep Code: TX 1005 W PR Sample Final Prep Container Wt/Vol Sample ID Volume Factor HS21051431-01 29.88 (g) 3 (mL) 0.1004 40 mL VOA w/ HCL 1 HS21051431-02 1 30.02 (g) 3 (mL) 0.09993 40 mL VOA w/ HCL HS21051431-03 1 29.78 (g) 3 (mL) 0.1007 40 mL VOA w/ HCL 1 3 (mL) 0.09904 40 mL VOA w/ HCL HS21051431-04 30.29 (g) 40 mL VOA w/ HCL HS21051431-05 3 (mL) 0.09924 1 30.23 (g) 0.0993 40 mL VOA w/ HCL HS21051431-06 1 30.21 (g) 3 (mL) 40 mL VOA w/ HCL HS21051431-08 1 29.89 (g) 3 (mL) 0.1004 Batch ID: 166389 Start Date: 01 Jun 2021 09:00 End Date: 01 Jun 2021 13:00 Method: WATER - SW3010A Prep Code: 3010A Sample Final Prep Container Wt/Vol Volume Factor Sample ID 120 plastic HNO3 HS21051431-01 10 (mL) 10 (mL) 1 120 plastic HNO3 HS21051431-02 10 (mL) 10 (mL) 1 HS21051431-03 10 (mL) 10 (mL) 1 120 plastic HNO3 HS21051431-04 10 (mL) 10 (mL) 1 120 plastic HNO3 10 (mL) 10 (mL) 120 plastic HNO3 HS21051431-05 1 HS21051431-06 10 (mL) 120 plastic HNO3 10 (mL) 1 Start Date: 02 Jun 2021 08:30 End Date: 02 Jun 2021 11:30 Batch ID: 166438 Method: MERCURY PREP BY 7470A- WATER Prep Code: HG WPR Sample Final Prep Container Wt/Vol Volume Factor Sample ID HS21051431-01 10 (mL) 10 (mL) 1 120 plastic HNO3 HS21051431-02 120 plastic HNO3 10 (mL) 10 (mL) 1 120 plastic HNO3 HS21051431-03 10 (mL) 10 (mL) 1 120 plastic HNO3 HS21051431-04 10 (mL) 10 (mL) 1 HS21051431-05 10 (mL) 1 120 plastic HNO3 10 (mL) 120 plastic HNO3 HS21051431-06 10 (mL) 10 (mL) 1 Batch ID: 166474 Start Date: 02 Jun 2021 12:00 End Date: 02 Jun 2021 15:00 Method: MERCURY PREP BY 7470A - DISSOLVED Prep Code: HG W DISSPR Sample Final Prep Container Wt/Vol Sample ID Volume Factor HS21051431-07 10 (mL) 10 (mL) 1 120 plastic HNO3

Date: 03-Jun-21

DATES REPORT

Client:InControl TechnologiesProject:N. Velasco StreetWorkOrder:HS21051431

Sample ID	Client Sam	ıp ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 166350 (0) Test Nam		Test Name :	DISSOLVED METALS BY SW6020A			Matrix: Water	er
HS21051431-07	MW-2D (Di	ssolved)	26 May 2021 13:11		28 May 2021 14:30	28 May 2021 20:36	1
Batch ID: 16635	1(0)	Test Name :	LOW-LEVEL TEXAS TR	PH BY TX1005		Matrix: Water	
HS21051431-01	MW-1S		26 May 2021 14:36		28 May 2021 12:05	31 May 2021 14:32	1
HS21051431-02	MW-3S		26 May 2021 13:16		28 May 2021 12:05	31 May 2021 21:24	1
HS21051431-03	MW-4S		26 May 2021 15:31		28 May 2021 12:05	31 May 2021 21:53	1
HS21051431-04	MW-1D		26 May 2021 16:01		28 May 2021 12:05	31 May 2021 22:23	1
HS21051431-05	MW-2D		26 May 2021 13:11		28 May 2021 12:05	31 May 2021 22:52	1
HS21051431-06	MW-3D		26 May 2021 14:11		28 May 2021 12:05	31 May 2021 23:21	1
HS21051431-08	Trip Blank		26 May 2021 00:00		28 May 2021 12:05	31 May 2021 23:51	1
Batch ID: 16638	9(0)	Test Name :	ICP-MS METALS BY SV	W6020A		Matrix: Water	
HS21051431-01	MW-1S		26 May 2021 14:36		01 Jun 2021 13:00	02 Jun 2021 22:13	1
HS21051431-02	MW-3S		26 May 2021 13:16		01 Jun 2021 13:00	02 Jun 2021 22:27	1
HS21051431-03	MW-4S		26 May 2021 15:31		01 Jun 2021 13:00	02 Jun 2021 22:29	1
HS21051431-04	MW-1D		26 May 2021 16:01		01 Jun 2021 13:00	02 Jun 2021 22:31	1
HS21051431-05	MW-2D		26 May 2021 13:11		01 Jun 2021 13:00	02 Jun 2021 22:33	1
HS21051431-06	MW-3D		26 May 2021 14:11		01 Jun 2021 13:00	02 Jun 2021 22:35	1
Batch ID: 166438	3(0)	Test Name :	MERCURY BY SW7470	A		Matrix: Water	
HS21051431-01	MW-1S		26 May 2021 14:36		02 Jun 2021 11:30	02 Jun 2021 13:52	1
HS21051431-02	MW-3S		26 May 2021 13:16		02 Jun 2021 11:30	02 Jun 2021 14:19	1
HS21051431-03	MW-4S		26 May 2021 15:31		02 Jun 2021 11:30	02 Jun 2021 14:21	1
HS21051431-04	MW-1D		26 May 2021 16:01		02 Jun 2021 11:30	02 Jun 2021 14:38	1
HS21051431-05	MW-2D		26 May 2021 13:11		02 Jun 2021 11:30	02 Jun 2021 14:40	1
HS21051431-06	MW-3D		26 May 2021 14:11		02 Jun 2021 11:30	02 Jun 2021 14:41	1
Batch ID: 166474	4(0)	Test Name :	DISSOLVED MERCURY	Y BY SW7470A		Matrix: Water	
HS21051431-07	MW-2D (Di	ssolved)	26 May 2021 13:11		02 Jun 2021 15:00	02 Jun 2021 16:31	1

	Order:	HS21051431					
Instru	umentID:	FID-12			KEF		115
Test	Code:	TX1005_W_Low					
Test	Number:	TX1005		Matrix: Aqueo	us Unit s	s: mg/L	
Test	Name:	Low-level Texas TF	PH by TX1005	Wallix: Aqueo	us Unit	S. mg/L	
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL
А	nC6 to nC1	2	TPH-1005-1	0.25	0.34	0.20	0.50
A	>nC12 to n	C28	TPH-1005-2	0.25	0.39	0.20	0.50
A	>nC28 to n	C35	TPH-1005-4	0.25	0.39	0.20	0.50
A	Total Petrol	eum Hydrocarbon	TPH	0.25	0.39	0.20	0.50
S	2-Fluorobip	henyl	321-60-8	0	0	0	0
S	Trifluorome	thyl benzene	98-08-8	0	0	0	0

WorkOrder: InstrumentID:	HS21051431 HG03				IOD DETEC ⁻ ORTING LIN	
Test Code:	HG_Diss					
Test Number:	SW7470A (dissolved)	Matrix:	Aqueous	Units	: mg/L	
Test Name:	Dissolved Mercury by SW7470A	Watrix.	/ 1900000	Unit	5. ^{mg/} ∟	
Type Analyte	CAS	S DC	S Spike	DCS	MDL	PQL
A Mercury	7439	9-97-6 (0.000100	0.0000850	0.0000300	0.000200

WorkOrder: InstrumentID:	HS21051431 HG03				THOD DETEC	
Test Code:	HG_W					
Test Number:	SW7470A		Matrix: Aqueous	2 11.	nits: mg/L	
Test Name:	Mercury by SW7470A		Matrix: Aqueous	, Ur	nits: mg/L	
Type Analyte		CAS	DCS Spike	DCS	MDL	PQL
A Mercury		7439-97-6	0.000100	0.0000850	0.0000300	0.000200

	Order: umentID:	HS21051431 ICPMS06				THOD DETEC EPORTING LI		
Test	Code:	ICP_DISS						
Test	Number:	SW6020A (dissolved)		Matrix: Aqueous	Units: mg/L			
Test Name:		Dissolved Metals by SW	6020A		01			
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL	
А	Arsenic		7440-38-2	0.00100	0.00117	0.000400	0.00200	
А	Barium		7440-39-3	0.00250	0.00232	0.00190	0.00400	
А	Cadmium		7440-43-9	0.000500	0.000450	0.000200	0.00200	
А	Chromium		7440-47-3	0.00100	0.000810	0.000400	0.00400	
А	Lead		7439-92-1	0.00100	0.000895	0.000600	0.00200	
А	Selenium		7782-49-2	0.00250	0.00178	0.00110	0.00200	
А	Silver		7440-22-4	0.000500	0.000432	0.000200	0.00200	

Work	Order:	HS21051431			ME	THOD DETEC	TION /	
Instru	umentID:	ICPMS04			F	REPORTING LI	MITS	
Test	Code:	ICP_TW						
Test	Number:	SW6020A		Matrix: Aqueous	Units: mg/L			
Test	Name:	ICP-MS Metals by SW6020A		Matrix: Aqueous	U			
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL	
А	Arsenic		7440-38-2	0.00100	0.000756	0.000400	0.00200	
А	Barium		7440-39-3	0.00250	0.00151	0.00190	0.00400	
А	Cadmium		7440-43-9	0.000500	0.000408	0.000200	0.00200	
А	Chromium		7440-47-3	0.00100	0.000629	0.000400	0.00400	
А	Lead		7439-92-1	0.00100	0.000773	0.000600	0.00200	
А	Selenium		7782-49-2	0.00250	0.00145	0.00110	0.00200	
А	Silver		7440-22-4	0.000500	0.000357	0.000200	0.00200	

Batch ID: 166351(0)	Instrume	nt: F	ID-12	Me	ethod: L	OW-LEVEL	TEXAS TPH	BY TX1005
MBLK Sample ID:	MBLK-166351		Units:	mg/L	Ana	alysis Date:	31-May-2021	13:03
Client ID:	Run ID:	FID-12	2_384736	SeqNo: 6	117823	PrepDate:	28-May-2021	DF: 1
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
nC6 to nC12	U	0.50						
>nC12 to nC28	U	0.50						
>nC28 to nC35	U	0.50						
Total Petroleum Hydrocarbon	U	0.50						
Surr: 2-Fluorobiphenyl	2.497	0	2.5	0	99.9	70 - 130		
Surr: Trifluoromethyl benzene	2.532	0	2.5	0	101	70 - 130		
LCS Sample ID:	LCS-166351		Units:	mg/L	Ana	alysis Date:	31-May-2021	13:33
Client ID:	Run ID:	FID-12	2_384736	SeqNo: 6	117824	PrepDate:	28-May-2021	DF: 1
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
nC6 to nC12	21.57	0.50	25	0	86.3	75 - 125		
>nC12 to nC28	22.18	0.50	25	0	88.7	75 - 125		
Surr: 2-Fluorobiphenyl	2.443	0	2.5	0	97.7	70 - 130		
Surr: Trifluoromethyl benzene	2.389	0	2.5	0	95.6	70 - 130		
LCSD Sample ID:	LCSD-166351		Units:	mg/L	Ana	alysis Date:	31-May-2021	14:02
Client ID:	Run ID:	FID-12	2_384736	SeqNo: 6	117825	PrepDate:	28-May-2021	DF: 1
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
nC6 to nC12	22.64	0.50	25	0	90.6	75 - 125	21.57	4.85 20
>nC12 to nC28	24.23	0.50	25	0	96.9	75 - 125	22.18	8.82 20
Surr: 2-Fluorobiphenyl	2.479	0	2.5	0	99.2	70 - 130	2.443	1.47 20
Surr: Trifluoromethyl benzene	2.49	0	2.5	0	99.6	70 - 130	2.389	4.14 20
MS Sample ID:	HS21051431-01MS		Units:	mg/L	Ana	alysis Date:	31-May-2021	15:01
Client ID: MW-1S	Run ID:	FID-12	2_384736	SeqNo: 6	117827	PrepDate:	28-May-2021	DF: 1
Analyte	Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
nC6 to nC12	23.5	0.49	24.59	0	95.6	75 - 125		
>nC12 to nC28	24.56	0.49	24.59	0	99.9	75 - 125		
Surr: 2-Fluorobiphenyl	2.508	0	2.459	0	102	70 - 130		
Surr: Trifluoromethyl benzene	2.499	0	2.459	0	102	70 - 130		

Batch ID:	166351(0)	Instrum	ent: F	FID-12	М	ethod: L	.OW-LEVEL	TEXAS TPH	BY TX1005
MSD	Sample ID:	HS21051431-01MSD		Units:	mg/L	Ana	alysis Date:	31-May-2021	15:31
Client ID:	MW-1S	Run II	D: FID-1	2_384736	SeqNo: 6	6117828	PrepDate:	28-May-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
nC6 to nC1	2	21.87	0.50	24.77	0	88.3	75 - 125	23.5	7.15 20
>nC12 to n	C28	24.22	0.50	24.77	0	97.8	75 - 125	24.56	1.42 20
Surr: 2-Fluc	orobiphenyl	2.268	0	2.477	0	91.6	70 - 130	2.508	10 20
Surr: Trifluc	promethyl benzene	2.266	0	2.477	0	91.5	70 - 130	2.499	9.77 20
The following	e following samples were analyzed in this batch: HS21051 HS21051			HS2105143 HS2105143		HS210514 HS210514		HS21051431-	04

Batch ID:	166350 (0)	Inst	rument:	ICPMS06	Method:	DISSOLVED METALS BY SW6020A (DISSOLVED)
MBLK	Sample ID:	MBLKF2-166350		Units:	mg/L A	nalysis Date: 28-May-2021 17:09
Client ID:		R	un ID: ICP	MS06_384592	SeqNo: 6116624	PrepDate: 28-May-2021 DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value %REC	Control RPD Ref RPD C Limit Value %RPD Limit Qua
Arsenic		U	0.00200			
Barium		U	0.00400			
Cadmium		U	0.00200			
Chromium		0.002652	0.00400			
Lead		U	0.00200			
Selenium		U	0.00200			
Silver		U	0.00200			
MBLK	Sample ID:	MBLKF1-166350		Units:	mg/L A	nalysis Date: 28-May-2021 17:07
Client ID:		R	un ID: ICP	MS06_384592	SeqNo: 6116623	
Analyte		Result	MQL	SPK Val	SPK Ref Value %REC	Control RPD Ref RPD C Limit Value %RPD Limit Qua
Arsenic		U	0.00200			
Barium		U	0.00400			
Cadmium		U	0.00200			
Chromium		U	0.00400			
Lead		U	0.00200			
Selenium		U	0.00200			
Silver		U	0.00200			
MBLK	Sample ID:	MBLK-166350		Units:	mg/L A	nalysis Date: 28-May-2021 17:05
Client ID:		R	un ID: ICP	MS06_384592	SeqNo: 6116622	· · ·
Analyte		Result	MQL	SPK Val	SPK Ref Value %REC	Control RPD Ref RPD C Limit Value %RPD Limit Qua
Arsenic		U	0.00200			
Barium		U	0.00400			
Cadmium		U	0.00200			

Chromium	U	0.00400	
Lead	U	0.00200	
Selenium	0.001959	0.00200	J
Silver	U	0.00200	

Batch ID:	166350 (0)	In	strument:	ICPMS06	M		DISSOLVED	METALS BY	SW6020A
LCS	Sample ID:	LCS-166350		Units:	mg/L	Ana	alysis Date:	28-May-2021	17:11
Client ID:			Run ID: ICPI	MS06_384592	SeqNo: 6	116625	PrepDate:	28-May-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Arsenic		0.04848	0.00200	0.05	0	97.0	80 - 120		
Barium		0.04985	0.00400	0.05	0	99.7	80 - 120		
Cadmium		0.05117	0.00200	0.05	0	102	80 - 120		
Chromium		0.04966	0.00400	0.05	0	99.3	80 - 120		
Lead		0.04828	0.00200	0.05	0	96.6	80 - 120		
Selenium		0.05011	0.00200	0.05	0	100	80 - 120		
Silver		0.04949	0.00200	0.05	0	99.0	80 - 120		
MS	Sample ID:	HS21050984-04I	MS	Units:	mg/L	Ana	alysis Date:	28-May-2021	17:38
Client ID:			Run ID: ICPI	MS06_384592	SeqNo: 6	116635	PrepDate:	28-May-2021	DF: 5
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Arsenic		0.2163	0.0100	0.05	0.1673	97.9	75 - 125		
Barium		0.05344	0.0200	0.05	0.004545	97.8	75 - 125		
Cadmium		0.09748	0.0100	0.05	0.05012	94.7	75 - 125		
Chromium		0.7533	0.0200	0.05	0.6946	117	75 - 125		
Lead		0.04833	0.0100	0.05	0.000247	96.2	75 - 125		
Selenium		0.3856	0.0100	0.05	0.3244	123	75 - 125		
Silver		0.04226	0.0100	0.05	0.000248	84.0	75 - 125		
MS	Sample ID:	HS21050978-011	MS	Units:	mg/L	Ana	alysis Date:	28-May-2021	18:02
Client ID:			Run ID: ICPI	MS06_384592	SeqNo: 6	116647	PrepDate:	28-May-2021	DF: 10
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua

	rtoodit	mae		Value	/01120	2	
Arsenic	0.05579	0.0200	0.05	0.007408	96.8	75 - 125	
Barium	0.09467	0.0400	0.05	0.04602	97.3	75 - 125	
Cadmium	0.05166	0.0200	0.05	0.00006	103	75 - 125	
Chromium	0.0526	0.0400	0.05	0.001945	101	75 - 125	
Lead	0.04956	0.0200	0.05	-0.00006	99.2	75 - 125	
Selenium	U	0.0200	0.05	0.003926	-7.85	75 - 125	S
Silver	0.04605	0.0200	0.05	0.000472	91.2	75 - 125	

Batch ID: 1	166350 (0)	Instr	ument:	ICPMS06	M	ellioù.	DISSOLVED	METALS BY))	SW6020/	1	
MSD	Sample ID:	HS21050984-04MS	D	Units:	mg/L	Ana	alysis Date:	28-May-2021	17:42		
Client ID:		Ru	n ID: ICPN	IS06_384592	SeqNo: 6	116637	PrepDate:	28-May-2021	DF: 5	5	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	R %RPD L	PD imit C	Qual
Arsenic		0.206	0.0100	0.05	0.1673	77.3	75 - 125	0.2163	4.89	20	
Barium		0.05146	0.0200	0.05	0.004545	93.8	75 - 125	0.05344	3.78	20	
Cadmium		0.09284	0.0100	0.05	0.05012	85.4	75 - 125	0.09748	4.87	20	
Chromium		0.7219	0.0200	0.05	0.6946	54.4	75 - 125	0.7533	4.26	20	SO
Lead		0.04652	0.0100	0.05	0.000247	92.5	75 - 125	0.04833	3.83	20	
Selenium		0.3662	0.0100	0.05	0.3244	83.6	75 - 125	0.3856	5.17	20	0
Silver		0.04021	0.0100	0.05	0.000248	79.9	75 - 125	0.04226	4.97	20	
MSD	Sample ID:	HS21050978-01MS	D	Units:	mg/L	Ana	alysis Date:	28-May-2021	18:06		

	Sample ID.	H321050976-01W3L	,	Units.	mg/∟	Alle	alysis Date.	20-111ay-202 1	10.00		
Client ID:		Rur	n ID: ICPM	S06_384592	SeqNo: 6	116649	PrepDate: 2	28-May-2021	DF: 1	10	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	R %RPD L	PD imit Qua	al
Arsenic		0.05276	0.0200	0.05	0.007408	90.7	75 - 125	0.05579	5.58	20	
Barium		0.0953	0.0400	0.05	0.04602	98.6	75 - 125	0.09467	0.667	20	
Cadmium		0.04818	0.0200	0.05	0.00006	96.2	75 - 125	0.05166	6.98	20	
Chromium		0.05396	0.0400	0.05	0.001945	104	75 - 125	0.0526	2.55	20	
Lead		0.05105	0.0200	0.05	-0.00006	102	75 - 125	0.04956	2.95	20	
Selenium		0.01125	0.0200	0.05	0.003926	14.7	75 - 125	0	0	20	JS
Silver		0.04498	0.0200	0.05	0.000472	89.0	75 - 125	0.04605	2.36	20	

PDS	Sample ID:	HS21050984-04PDS		Units:	mg/L	Ana	lysis Date:	28-May-2021	17:44
Client ID:		Run	ID: ICPMS	606_384592	SeqNo: 6	116638	PrepDate:	28-May-2021	DF: 5
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.6528	0.0100	0.5	0.1673	97.1	75 - 125		
Barium		0.4985	0.0200	0.5	0	99.7	75 - 125		
Cadmium		0.5334	0.0100	0.5	0.05012	96.7	75 - 125		
Chromium		1.18	0.0200	0.5	0.6946	97.1	75 - 125		
Lead		0.4955	0.0100	0.5	0	99.1	75 - 125		
Selenium		0.9022	0.0100	0.5	0.3244	116	75 - 125		
Silver		0.4303	0.0100	0.5	0	86.1	75 - 125		

Batch ID: 166	6350(0)	Instru	ument:	CPMS06	Me	ellioù.	DISSOLVED	METALS BY)	SW6020A
PDS	Sample ID:	HS21050978-01PD	3	Units:	mg/L	Ana	alysis Date:	28-May-2021	18:08
Client ID:		Ru	n ID: ICPM	S06_384592	SeqNo: 6	116650	PrepDate:	28-May-2021	DF: 10
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.9556	0.0200	1	0.007408	94.8	75 - 125		
Barium		1.048	0.0400	1	0.04602	100	75 - 125		
Cadmium		0.9363	0.0200	1	0	93.6	75 - 125		
Chromium		1.004	0.0400	1	0	100	75 - 125		
Lead		0.9865	0.0200	1	0	98.7	75 - 125		
Selenium		0.9455	0.0200	1	0	94.6	75 - 125		
Silver		0.8618	0.0200	1	0	86.2	75 - 125		

SD	Sample ID:	HS21050984-04SD		Units:	mg/L	Ana	alysis Date: 2	28-May-2021	17:36		
Client ID:		Run	ID: ICPM	S06_384592	SeqNo: 6	6116634	PrepDate: 2	28-May-2021	DF:	25	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit Q	lual
Arsenic		0.1692	0.0500					0.1673	1.14	4 10	
Barium		U	0.100					0.004545		0 10	
Cadmium		0.05	0.0500					0.05012	0.23	3 10	
Chromium		0.7235	0.100					0.6946	4.1	5 10	
Lead		U	0.0500					0.000247	(0 10	
Silver		U	0.0500					0.000248		0 10	

SD	Sample ID:	HS21050978-01SD		Units:	mg/L	Ana	alysis Date: 2	28-May-2021	18:00	
Client ID:		Run I	D: ICPM	S06_384592	SeqNo: 6	116646	PrepDate: 2	28-May-2021	DF	-: 50
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit Qual
Arsenic		U	0.100					0.007408		0 10
Barium		U	0.200					0.04602		0 10
Cadmium		U	0.100					0.00006		0 10
Chromium		U	0.200					0.001945		0 10
Lead		U	0.100					-0.00006		0 10
Selenium		U	0.100					0.003926		0 10
Silver		U	0.100					0.000472		0 10
The following samp	les were analyze	ed in this batch: HS210514	431-07							

Batch ID:	166389 (0)	Ins	strument:	ICPMS04	M	ethod: I	CP-MS MET	ALS BY SW6	020A
MBLK	Sample ID:	MBLK-166389		Units:	mg/L	Ana	alysis Date:	02-Jun-2021	22:09
Client ID:		I	Run ID: ICPN	IS04_384810	SeqNo: 6	119905	PrepDate:	01-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		U	0.00200						
Barium		U	0.00400						
Cadmium		U	0.00200						
Chromium		U	0.00400						
Lead		U	0.00200						
Selenium		U	0.00200						
Silver		U	0.00200						
LCS	Sample ID:	LCS-166389		Units:	mg/L	Ana	alysis Date:	02-Jun-2021	22:11
Client ID:		I	Run ID: ICPN	IS04_384810	SeqNo: 6	119906	PrepDate:	01-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04633	0.00200	0.05	0	92.7	80 - 120		
Barium		0.04776	0.00400	0.05	0	95.5	80 - 120		
Cadmium		0.05086	0.00200	0.05	0	102	80 - 120		
Chromium		0.04725	0.00400	0.05	0	94.5	80 - 120		
Lead		0.04571	0.00200	0.05	0	91.4	80 - 120		
Selenium		0.04533	0.00200	0.05	0	90.7	80 - 120		
Silver		0.04855	0.00200	0.05	0	97.1	80 - 120		
MS	Sample ID:	HS21051431-01M	IS	Units:	mg/L	Ana	alysis Date:	02-Jun-2021	22:17
Client ID:	MW-1S	I	Run ID: ICPN	IS04_384810	SeqNo: 6	119909	PrepDate:	01-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04908	0.00200	0.05	0.001883	94.4	80 - 120		
Barium		0.1247	0.00400	0.05	0.07482	99.8	80 - 120		
Cadmium		0.05016	0.00200	0.05	0.001369	97.6	80 - 120		
Chromium		0.04752	0.00400	0.05	0.000804	93.4	80 - 120		
Lead		0.0565	0.00200	0.05	0.009756	93.5	80 - 120		
Selenium		0.0516	0.00200	0.05	0.00486	93.5	80 - 120		
Silver		0.04549	0.00200	0.05	0.000042	90.9	80 - 120		

Batch ID:	166389(0)	Inst	rument:	ICPMS04	M	ethod: I	CP-MS MET	ALS BY SW6	020A		
MSD Client ID:	Sample ID: MW-1S			Units: IS04_384810	mg/L SeqNo: 6			02-Jun-2021	22:19 DF	. 1	
Client ID.	11114-13	K	UNID. ICPIV	1504_364610	SPK Ref	0119910	Control	01-Jun-2021 RPD Ref	DF	RPD	
Analyte		Result	MQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit Qu	al
Arsenic		0.04803	0.00200	0.05	0.001883	92.3	80 - 120	0.04908	2.1	6 20	
Barium		0.1249	0.00400	0.05	0.07482	100	80 - 120	0.1247	0.12	7 20	
Cadmium		0.05069	0.00200	0.05	0.001369	98.6	80 - 120	0.05016	1.0	5 20	
Chromium		0.04597	0.00400	0.05	0.000804	90.3	80 - 120	0.04752	3.3	3 20	
Lead		0.05652	0.00200	0.05	0.009756	93.5	80 - 120	0.0565	0.038	9 20	
Selenium		0.05048	0.00200	0.05	0.00486	91.2	80 - 120	0.0516	2.1	9 20	
Silver		0.04061	0.00200	0.05	0.000042	81.1	80 - 120	0.04549	11.	3 20	
PDS	Sample ID:	HS21051431-01PD	S	Units:	mg/L	Ana	alysis Date:	02-Jun-2021	22:21		
Client ID:	MW-1S	R	un ID: ICPN	IS04_384810	SeqNo: 6	5119911	PrepDate:	01-Jun-2021	DF	: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qu	al
Arsenic		0.1044	0.00200	0.1	0.001883	103	75 - 125				
Barium		0.1816	0.00400	0.1	0.07482	107	75 - 125				
Cadmium		0.1043	0.00200	0.1	0.001369	103	75 - 125				
Chromium		0.09884	0.00400	0.1	0.000804	98.0	75 - 125				
Lead		0.1118	0.00200	0.1	0.009756	102	75 - 125				
Selenium		0.1066	0.00200	0.1	0.00486	102	75 - 125				
Silver		0.0968	0.00200	0.1	0.000042	96.8	75 - 125				
SD	Sample ID:	HS21051431-01SD)	Units:	mg/L	Ana	alysis Date:	02-Jun-2021	22:15		
Client ID:	MW-1S	R	un ID: ICPN	IS04_384810	SeqNo: 6	6119908	PrepDate:	01-Jun-2021	DF	: 5	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit Qu	al
Arsenic		0.0027	0.0100					0.001883		0 10	J
Barium		0.07603	0.0200					0.07482	1.6	1 10	
Cadmium		0.001531	0.0100					0.001369		0 10	J
Chromium		U	0.0200					0.000804		0 10	
Lead		0.01024	0.0100					0.009756		0 10	
Selenium		U	0.0100					0.00486		0 10	
Silver		U	0.0100					0.000042		0 10	
The following	g samples were analyze		051431-01 051431-05	HS2105143 HS2105143		HS210514	31-03	HS21051431	-04		

Date: 03-Jun-21

QC BATCH REPORT

Client:InControl TechnologiesProject:N. Velasco StreetWorkOrder:HS21051431

Batch ID:	166438 (0)	Ins	strument: H	IG03	М	ethod: N	IERCURY B	Y SW7470A	
MBLK	Sample ID:	MBLK-166438		Units:	U		Ilysis Date:	02-Jun-2021	
Client ID:		F	Run ID: HG03	_384793	SeqNo: 6	6119488	PrepDate:	02-Jun-2021	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		U	0.000200						
LCS	Sample ID:	LCS-166438		Units:	mg/L	Ana	lysis Date:	02-Jun-2021	13:50
Client ID:		F	Run ID: HG03	_384793	SeqNo: 6	6119489	PrepDate:	02-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		0.00542	0.000200	0.005	0	108	80 - 120		
мѕ	Sample ID:	HS21051431-01N	IS	Units:	mg/L	Ana	lysis Date:	02-Jun-2021	13:54
Client ID:	MW-1S	F	Run ID: HG03	_384793	SeqNo: 6	6119491	PrepDate:	02-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		0.00521	0.000200	0.005	0.000006	104	75 - 125		
MSD	Sample ID:	HS21051431-01M	ISD	Units:	mg/L	Ana	lysis Date:	02-Jun-2021	13:56
Client ID:	MW-1S	F	Run ID: HG03	_384793	SeqNo: 6	6119492	PrepDate:	02-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		0.00483	0.000200	0.005	0.000006	96.5	75 - 125	0.00521	7.57 20
The followin	g samples were analyze		1051431-01 1051431-05	HS2105143 HS2105143		HS210514	31-03	HS21051431	-04

Batch ID:	166474(0)	Insti	rument:	HG03	М	eniou.	DISSOLVED DISSOLVED	MERCURY E	BY SW7470A
MBLK Client ID:	Sample ID:	MBLKF1-166474	un ID: HG03		mg/L SeqNo: 6			02-Jun-2021 02-Jun-2021	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		U	0.000200						
MBLK Client ID:	Sample ID:	MBLK-166474 Rເ	un ID: HG03		mg/L SeqNo: 6 SPK Ref			02-Jun-2021 02-Jun-2021 RPD Ref	
Analyte		Result	MQL	SPK Val	Value	%REC	Limit	Value	%RPD Limit Qual
Mercury		U	0.000200						
LCS Client ID:	Sample ID:	LCS-166474 Ru	un ID: HG03		mg/L SeqNo: 6		PrepDate:	02-Jun-2021 02-Jun-2021	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		0.00482	0.000200	0.005	0	96.4	80 - 120		
MS Client ID:	Sample ID: MW-2D (Dissolved)	HS21051431-07MS Rเ	an ID: HG03		mg/L SeqNo: 6			02-Jun-2021 02-Jun-2021	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Mercury		0.0049	0.000200	0.005	0.000033	97.3	80 - 120		
MSD	Sample ID:	HS21051431-07MS			mg/L		5	02-Jun-2021	
Client ID: Analyte	MW-2D (Dissolved)	Ru Result	ın ID: HG03 MQL	3_384793 SPK Val	SeqNo: 6 SPK Ref Value	%REC	PrepDate: Control Limit	02-Jun-2021 RPD Ref Value	DF: 1 RPD %RPD Limit Qual
Mercury		0.0056	0.000200	0.005	0.000033	111	80 - 120	0.0049	13.3 20
The followin	g samples were analyze	d in this batch: HS210	051431-07						

ALS Houston, US

Client: Project: WorkOrder:	InControl Technologies N. Velasco Street HS21051431	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
М	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	
Unit Reported	Description	
ma/l	Milliorams per Liter	

mg/L

Milligrams per Liter

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	21-022-0	26-Mar-2022
Dept of Defense	PJLA L20-507-R2	22-Dec-2021
Florida	E87611-30-07/01/2020	30-Jun-2021
Kansas	E-10352 2020-2021	31-Jul-2021
Kentucky	123043, 2021-2022	30-Apr-2022
Louisiana	03087, 2020-2021	30-Jun-2021
North Carolina	624-2021	31-Dec-2021
Oklahoma	2020-165	31-Aug-2021
Texas	T104704231-21-27	30-Apr-2022
Utah	TX026932021-10	31-Jul-2021

					Sample Receipt Checklist
Work Order ID:	HS21051431		Date/	Time Received:	<u>27-May-2021 14:18</u>
Client Name:	In Control		Recei	ived by:	Patrick Salome
Completed By:	/S/ Pablo Marinez	27-May-2021 18:16	Reviewed by: /S/	Bernadette A. F	ini 28-May-2021 08:31
	eSignature	Date/Time	_	eSignature	Date/Time
Matrices:	WATER		Carrier name:	<u>ALS.HS</u>	
Custody seals in Custody seals in VOA/TX1005/T2 Chain of custod Chain of custod Samplers name Chain of custod Samples in prop Sample containe Sufficient sampl All samples rece	y signed when relinquished and present on COC? y agrees with sample labels? per container/bottle?	led vials? received?	Yes Yes Yes Yes Yes Yes Yes Yes	No Not Present Not Present Not Present Not Present Not Present Not Present Not Present COC IDs:N/A	
Temperature(s)	Thermometer(s):		0.3°C UC/C		IR 31
Cooler(s)/Kit(s):	ble(s) sent to storage:		47206 5/27/21 18:25		
Water - VOA via	als have zero headspace?		Yes Yes	No	No VOA vials submitted
Client Contacted	d:	Date Contacted:		Person Con	tacted:
Contacted By:		Regarding:			
Comments: Corrective Actio	n:				

	ALS Laboratory Group					Chai	in-of	-Cus	tor	dv.				[1				
	10450 Stancliff Rd Ste 210, Houston, TX 77099							• 40		• •				WOR	KORDER					
ALS	TF: (800) 443-1511 PH: (281) 530-5656 FX: (281) 530	-5887										F	Form 202r8		Ŧ					
(ALS)		SA	MPLER	E. Stibb	be / S. Stoneberg	9				******	DATE	5/27/	21		PAGE	Ĺ	1	of	1	1
PROJECT NAME	N. Velasco Street		SITE ID							TUR	NAROUND			у) р	ISPOSAL	By La	ab or	Ret	turn to (Client
PROJECT No.	E21032-101	EDD FO	ORMAT							Τ	T		T	17		F	T	TT		<u> </u>
		PURCHASE	ORDER						1										1	1
COMPANY NAME	InControl Technologies LLC	BILL TO CO	MPANY	InContr	rol Technologies	s LLC		 	1				H	S21	051	431				
SEND REPORT TO	Mike Marcon, Emily Stibbe	INVOICE A	тти то	Angela	Marcon				1				InCon	ntrol ⁻	Techr	noloa	ies			
ADDRESS	14731 Pebble Bend Dr.	AD	DRESS	14731 P	Pebble Bend Dr				1	s			N	l. Vela	isco St	reet	.00			
CITY / STATE / ZIP	Houston, TX 77068	CITY / STAT	TE / ZIP	Houston	on, TX 77068				1	Meta										
PHONE	281-580-8892		PHONE	281-580)-8892				Her	8 A 8										
FAX	281-580-8853		FAX	281-580)-8853				05 T	RCF										
E-MAIL			E-MAIL	invoicir	ing@incontrolt	tech.com	<u>n</u>		TX1005	6020 RCRA 8 Metals										1
				1		[Ť				+-+		┟───┼──	+	++		-
Lab ID	Field ID	Matrix	Sam Da	• 1	Sample Time	# Bottles	Pres.	QC												
	MW-1S	W	5/26/	2021	1436	4	1/2		x	x								┢╌┼		
	MW-3S	w	5/26/	2021	1316	4	1/2		x	x						 		┝╍┼		+
	MW-4S	w	5/26/2	2021	1531	4	1/2		x	x				+			-	\vdash		-
	MW-1D	w	5/26/2	2021	1601	4	1/2		x	x				+			+	-+		-
	MW-2D	w	5/26/2	2021	1311	4	1/2		x	x								\vdash		+
	MW-3D	w	5/26/2	2021	1411	4	1/2		x	x								\vdash		
	MW-2D (Dissolved)	w	5/26/2	2021	1311	1	1/2			x							+			-
	Trip Blank	w	-		-	2	2		x											-
																		┝╼┾		
														1				┝━━╋		+

*Time Zone (Circle): EST CST MST PST Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract F = filter

For metals or anions, please detail analytes below.

Comments:		QC PAC	CKAGE (check below)
	47206		LEVEL II (Standard QC)
	0.30		LEVEL III (Std QC + forms)
	(R51		LEVEL IV (Std QC + forms + raw data)
	CFO	X	TRRP
Preservative Key:	1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-	Other 8-4 c	legrees C 9-5035

	SIGNATURE	PRINTED NAME	DATE	TIME
RELINQUISHED BY	anules Stible	2 n.E. Stippe		
RECEIVED BY	Redation	No Son amir	5-22-21	1330
RELINQUISHED BY	Unk Moni	V. SALOME	57721	14/8
RECEIVED BY	p	1		1.1
RELINQUISHED BY				
RECEIVED BY				

	ALS 10450 Stancliff Rd., Suite 210	CUSTODY SEAL	Seal Broken By:
ALS	Houston, Texas 77099 Tel. +1 281 530 5656 Fax. +1 281 530 5687	Date: 5/12(0/7.) Time: 17:30 Name: 9.5h bize Company: 1000000000000000000000000000000000000	199 Date: 5. ステ・み

i

Groundwater Monitoring Well Construction Details

Lead Products - Lead Products Station: COHMW01 - Well Construction Log

Geologist/Engineer Grayson Pointer					
Start Date 06/09/98 Time 0700	Drilling Method	Hollow Stem Au	Iger Northing	80	793.64
End Date 06/09/98 Time 0830	Drilling Company	BEST	Easting	30	300.71
	Borehole Diameter	6.0 inches	Ground Elevation		33.70
Observations:	Total Depth	20.0 feet	Datum Elevation		36.15
COHMW01 is located on the City of Hous	ston property located no	orth of	Completion	Well Pad	
the LP site. A dozer was used to clear an	nd level brush and debri	is	Well Casing	PVC	
from the area. No air monitoring instrume boring.	ent was used during this	5	Well Diameter	4.0	inches
			Total Well Depth	20.0	feet

Depth (ft)	Interva (%Rec)	l)Log \	Well	Monitor Instr.	USCS	Description	Sample ID
- 1.0	75			-	SM	dark brown to black SILTY SAND, loose, dry, subrounded, medium grained, poorly sorted. Upper 1.5 feet, encountered some battery casings, and glass; however mostly clean soils.	
- 4.0	- 100				SM	SAND-SILT MIXTURE.	
- 5.0 - 6.0 - 7.0 - 8.0 - 9.0			00000000000		СН	light gray, firm CLAY, moist, medium plasticity.	
-10.0 07/31/	/98 07	7:23				Station: COHMW01	Page: 1

Lead Products - Lead Products Station: COHMW01 - Well Construction Log

Depth	Interval	Monito	USCE	Description	Sample I
(ft)	(%Rec) Log We	instr.	USCS	light gray, firm CLAY, moist, medium plasticity.	
= =					
=					
11.0-					
=					
=					
=					
11.0					
=	100				
-					
-					
13.0-					
13.0					
_					
14 0 -					
=					
-					
=					
150-		<u></u>	-	light gray to light brown SAND, loose, saturated, rounded, medium grained, well sorted. Enounter	
=			SW	saturated sands; very clean, with little silt present.	
=					
=					
16.0-					
=	100				
-					
=					
17.0					
-					
=					
18.0-			1 1		
-					
-					
18.0		š	СН	light gray to light brown, stiff CLAY, moist, high plasticity.	
-			Ch		
Ξ					
=					
20.0		Č.			

November 20, 2006

11555 Clay Road, Suite 100 Houston, Texas 77043 Phone 713.690.8989 Fax 713.690.8787 www.terracon.com

Mr. David Reel City of Houston Mayor's Office Brownfields Redevelopment Program 900 Bagby, 2nd Floor Houston, Texas, 77022

Telephone: (713) 437-6524 Fax: (713) 247-1219

Re: Limited Site Investigation City of Houston - Vacant Land 800 Block North Velasco Street Houston, Harris County, Texas Terracon Project No. 92067647

Dear Mr. Reel:

Terracon Consultants, Inc. (Terracon) is pleased to submit three copies of the Limited Site Investigation (LSI) report for the above referenced site. This investigation was performed in accordance with Terracon's Proposal Number P92-1532E-06 dated August 14, 2006.

The investigation-derived waste (IDW) materials are currently staged on-site. Upon your request, Terracon will dispose of the IDW as described in Terracon's proposal.

We appreciate the opportunity to perform these services for the City of Houston's Brownfields Redevelopment Program. Please contact either of the undersigned at (713) 690-8989 if you have questions regarding the information provided in the report.

Sincerely,

Prepared by:

′Prasad Rajulu Senior Project Manager

Reviewed by:

Steven R. Neely, Program Manage EVEN R. NE

Delivering Success for Clients and Employees Since 1965 More Than 80 Offices Nationwide

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston

BORING / WELL NUMBER: <u>MW-1</u> TOTAL DEPTH: <u>25.0</u>'

SURFACE ELEVATION: Not Determined

SUPERVISOR: Josh McFarlain

DRILLING COMPANY: QRI, LLC DRILLER: Bruce Morris DRILLING METHOD: Hollow Stem Auger (HSA) BORE HOLE DIAMETER: 8.25" SCREEN: Diam. 2" Length 10' Slot Size 0.01" CASING: Diam. 2" Length 15' Type PVC

DATE DRILLED: 9-14-06

	Ъ	CTION				NO	DESCRIPTION OF STRATUM		C
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	Old	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		DEPTH (FT)
0	34					0.5			0
			0	\mathbb{N}		-0.5	TOSPOIL CLAY, sandy, light gray with tan mottling, low plasticity, no odor	 	
			0	\square		4			
5			0	\mathbb{N}	1		SAND, silty, gray to light brown, dry, no odor		5
			0 0						
			0	∇					10
10			0	ľŇ					
			0	$\left\{ \right\}$	Ĭ		- grades to dark tan		-
15			0	X			- grades to light tan		15
			0		1				
			0	X		18.5	- wet to saturated		~
20			0	$\left \right $			CLAY, light gray with dark tan mottling, dry, no odor	-	20
			0	\mathbb{N}	/				-
			0						
25			0			25	Boring terminated at 25 ft. bgs.		25
	_								
30								_	30
	-								-
									_
35									35
9				~~~~					_
									-
40 REN		 KS:	1				<u> </u>		40
	-1 w 1dor	no. as initially co red and an a	mpleteo djacent	l as moi	a mor nitor w	nitor we ell (MV	ell, however, it did not yield groundwater and was plugger and V-1A) was installed		הכ

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston

BORING / WELL NUMBER: <u>MW-1A</u>

TOTAL DEPTH: 40.0'

SURFACE ELEVATION: 36.6

SUPERVISOR: Josh McFarlain

DRILLING COMPANY: Alpine Field Services DRILLER: Jamie Vasquez DRILLING METHOD: Hollow Stem Auger (HSA) BORE HOLE DIAMETER: 8.25" SCREEN: Diam. 2" Length 10' Slot Size 0.01" CASING: Diam. 2" Length 30' Type DATE DRILLED: 9-13-06 9-13-06 9-13-06 9-13-06

	30L	CTION				NOI	DESCRIPTION OF STRATUM	ŕ	(1
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION		SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		
o									0
			0	\square		-0.5	CLAY, sandy, light gray with tan mottling, low plasticity, no odor		
			0	Å					
5			0	$\left(\right)$		4	SAND, silty, gray to light brown, dry, no odor		5
			0	IX					
			0	\square					
10			0	\mathbb{N}	4				10
			0	ľÅ					
			0	$\left\{ \right\}$			- grades to dark tan		
15			0	X			- grades to light tan		15
15			0						
	_		0	\mathbb{N}	1				
			0	A	-	<u>18.5</u> 19	- wet to saturated	-	20
20			0	$\left\{ \right\}$	7		CLAY, light gray with dark tan mottling, dry, no odor		20
			0	X					
			0		ļ				0.0
25			0	\forall	4	25	CLAY, silty, dark red with gray mottling, low plasticity, crumbly, no odor		25
			0						-
			0	$\left(\right)$	1				-
30			0	X					30
			0	\downarrow	Y				-
	,		0	\mathbb{V}		34			
35			0				SAND, silty, dark brown to red, no odor, Terminated boring at 40 feet below ground surface (bgs).		35
			0		1				
	-		0	X					
<u>40</u>			0	V	Ν	40	L		40
S REN	IAK	NO ,					Terrac		
ENVLOG									
									,

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston

BORING / WELL NUMBER: <u>MW-2</u> TOTAL DEPTH: <u>45.0'</u>

SURFACE ELEVATION: 34.9

SUPERVISOR: Josh McFarlain

DRILLING COMPANY: QRI, LLC DRILLER: Bruce Morris DRILLING METHOD: Hollow Stem Auger (HSA) BORE HOLE DIAMETER: 8.25" SCREEN: Diam. 2" Length 10' Slot Size 0.01" CASING: Diam. 2" Length 35' Type PVC

DATE DRILLED: 9-11-06

	οΓ	NOLLO	······			NO	DESCRIPTION OF STRATUM	1	C
DEPTH (FT)	SOIL SYMBOL	WELL	QIL	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		DEPTH (F1)
0	34			ļ		0.5	70000		0
			0	∇		0.5	<u>TOPSOIL</u> SAND, silty, light tan to red, dry, no odor		
			0	\square					
5			0 0	\mathbb{N}					5
			0 0	\mathbb{N}					
10			0	\mathbb{N}) 				10
			0				- grades to light tan		
			0	$\overline{\mathbf{N}}$	1				
15			0	ľ					15
			0	$\overline{+}$		17	CLAY, light tan with tan mottling, dry, plastic, stiff, no odor		
			0	X			- sand seam approximately 8" thick		
_20			0	$\left\{ \right\}$					20
			0	X				<u> </u>	
25			0)				25
			0	X					-
			0		X		- grades to red with gray mottling, extremely stiff		-
30			0	X					30
			0	4	X	33			-
35			0	$ \chi $	-		SAND, silty, dark red to brown, no odor		35
 	7		0		Ì		- wet to saturated		-
			0		/				-
40			0	//					40
	IAR	KS:					Terrac		
ENVLC									

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston BORING / WELL NUMBER: MW-2

TOTAL DEPTH: 45.0'

SURFACE ELEVATION: 34.9

SUPERVISOR: Josh McFarlain

DRILLING COMPANY: QRI, LLC DRILLER: Bruce Morris DRILLING METHOD: Hollow Stem Auger (HSA) BORE HOLE DIAMETER: 8.25" SCREEN: Diam. 2" Length 10' Slot Size ____ 0.01" CASING: Diam. 2" Length 35' Type _____ PVC

DATE DRILLED: 9-11-06

PAGE 2 of 2

	ΩΓ	CTION N				NO	DESCRIPTION OF STRATUM		
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	입	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		DEPTH (FT)
40									40
	· · · · ·		0	\mathbb{N}					
			0 0	\mathbb{N}					
45			Ŭ			45			45
	-						Boring terminated at 45 ft. bgs		
_50									50
	-								
	-								
55	-								55
	-								
	-								
60	-								60
	-								
65									65
	-								
]
70	-								70
	-								-
75	-								75
8	-								
	-								-
80									80
	IAR	<s:< td=""><td></td><td></td><td></td><td></td><td>Jerrac</td><td></td><td></td></s:<>					Jerrac		
									A

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston

BORING / WELL NUMBER: <u>MW-3</u>

TOTAL DEPTH: <u>40.0'</u> SURFACE ELEVATION: <u>35.8</u>

SUPERVISOR: Josh McFarlain

DRILLING COMPANY: <u>Alpine Field Services</u> DRILLER: Jamie Vasquez DRILLING METHOD: <u>Hollow Stem Auger (HSA)</u> BORE HOLE DIAMETER: <u>8.25"</u> SCREEN: Diam. <u>2"</u> Length <u>10'</u> Slot Size <u>0.01"</u> CASING: Diam. <u>2"</u> Length <u>30'</u> Type <u>PVC</u>

DATE DRILLED: 9-13-06

	30L	CTION				ION	DESCRIPTION OF STRATUM	
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	Ûld	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation Grain Size, Observations	DEPTH (FT)
			0 0	$\left \right\rangle$			FILL, ash mixed with sand and silt, dark brown to black, glass fragments throughout, non plastic, no odor	0
5			0 0 0 0					5
			0 0 0 0	X		10	CLAY, sandy, light gray with tan mottling, plastic, no odor	10
			0 0 0			<u>15</u> <u>17</u>	SAND, silty, light tan, damp, coarse, no odor	15
			0 0 0 0 0	X		18	- sandy clay seam approximately 1' thick CLAY, light tan, dry, stiff, plastic, no odor	20
			0 0 0 0			27.5	- grades to red wih gray mottling, extremely stiff	<u>25</u>
30			0 0 0 0 0				CLAY, silty, gray with red, dry, plastic, no odor	<u>30</u>
35			0 0 0 0 0			34	SAND, silty, dark red to brown, wet to saturated, no odor, Terminated boring at 40 ft. below ground surface (bgs)	35
40 REM	IARI	(S:	0	X		40		40
							lerra	con

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston BORING / WELL NUMBER: MW-4

TOTAL DEPTH: <u>55.0'</u>

SURFACE ELEVATION: 48.9

SUPERVISOR: Josh McFarlain

DRILLING COMPANY: Alpine Field Services DRILLER: Jamie Vasquez DRILLING METHOD: Hollow Stem Auger (HSA) BORE HOLE DIAMETER: 8.25" SCREEN: Diam. 2" Length 10' Slot Size 0.01" CASING: Diam. 2" Length 45' Type PVC

DATE DRILLED: 9-13-06

(FT	「豊日					Ň	DESCRIPTION OF STRATUM	c	-
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	Old	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		uerin (ri)
		CONTRACTOR OF CONT			SAN	33 33	FILL, silt and sand mixed with broken glass fragments, dark brown to black, non plastic CLAY, gray with tan mottling, dry, plastic, stiff, no odor - grades to red with gray, extremely stiff, high plasticity - calcareous concretions approximately 1 ' thick		
40 REN	MARI	KS:	0		V	40	Terrac		40 M

PROJECT: City of Houston	DRILLING COMPANY: Alpine Field Services				
PROJECT NUMBER: 92067647	DRILLER: Jamie Vasquez				
CLIENT: City of Houston	DRILLING METHOD: Hollow Stem Auger (HSA)				
BORING / WELL NUMBER: MW-4	BORE HOLE DIAMETER: 8.25"				
TOTAL DEPTH: 55.0'	SCREEN: Diam. <u>2"</u> Length <u>10'</u> Slot Size <u>0.01"</u>				
SURFACE ELEVATION: 48.9	CASING: Diam. <u>2"</u> Length <u>45'</u> Type <u>PVC</u>				
SUPERVISOR: Josh McFarlain	DATE DRILLED: 9-13-06				

PAGE 2 of 2 DESCRIPTION OF STRATUM

	~	gL	NOILC				NO	DESCRIPTION OF STRATUM	ç	^
	DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	Q	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		DEP1H (F1)
	40	IJ		0	\mathbb{V}			SILT, clayey, gray with red mottles, damp, low plasticity, no odor		<u>40</u>
				0 0 0 0	$\left \right $		45	CLAY, silty, gray with red and various tan shades, damp, low palsticity, no odor		45
	<u>⊽</u> 50			0 0 0 0				SAND, silty, dark red to brown, wet to saturated, no odor		50
	55			0 0 0			55	Terminated boring at 55 ft. below ground surface (bgs)		55
	60	-								60
		-								
	65									65
										70
0		-								75
									80	
										A-

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: City of Houston BORING / WELL NUMBER: MW-5

TOTAL DEPTH: 50.0

SURFACE ELEVATION: 46.3

SUPERVISOR:Josh McFarlain

 DRILLING COMPANY:
 Alpine Field Services

 DRILLER:
 Jamie Vasquez

 DRILLING METHOD:
 Hollow Stem Auger (HSA)

 BORE HOLE DIAMETER:
 8.25"

 SCREEN:
 Diam.
 2"

 Length
 10'
 Slot Size
 0.01"

 CASING:
 Diam.
 2"
 Length
 40'
 Type

 DATE DRILLED:
 9-15-06
 9-15-06
 9-15-06
 9-15-06

	۲ ۲	TION				N	DESCRIPTION OF STRATUM	
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	Old	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation Grain Size, Observations	DEPTH (FT)
			0 0 0 0				FILL, silt and sand mixed with ash, glass fragments throughout, black to dark brown, non plastic	0
			0 0 0 0 0					 10
			0 0 0 0 0					15
			0 0 0 0 0	\mathbb{N}				20
25			0 0 0 0					25
30	-		0 19.7 0 0 0			31	- odor to 31 ft. SILT, sandy, light gray, damp, no odor	30
35			0 0 0 0 0			40	- grades to light tan with gray	35 40
40 REM	AR	(S:	<u></u>	¥	¥	1 70	lerrac	

PROJECT: City of Houston

PROJECT NUMBER: 92067647

CLIENT: <u>City of Houston</u> BORING / WELL NUMBER: <u>MW-5</u>

SURFACE ELEVATION: 46.3

SUPERVISOR:Josh McFarlain

DRILLING COMPANY: Alpine Field Services									
DRILLER: Jamie Vasquez									
DRILLING METHOD: Hollow Stem Auger (HSA)									
BORE HOLE DIAMETER: 8.25"									
SCREEN: Diam. 2" Length 10' Slot Size 0.01"									
CASING: Diam. 2" Length 40' Type PVC									
DATE DRILLED: 9-15-06									

PAGE 2 of 2

Lab Image: Signal of the second s		öĽ	NOILO				NO	DESCRIPTION OF STRATUM		
45 0 0 45 50 0 0 45 50 0 0 45 50 0 0 45 50 0 0 45 50 0 0 45 50 0 0 45 50 0 0 49 50 0 0 50 50 0 0 50 60 0 0 50 60 0 0 55 60 0 0 55 70 0 0 0 70 0 0 0 0 71 0 0 0 0 0 71 0 0 0 0 0 0 70 0 0 0 0 0 0 71 0 0 0 0 0 0 71 0 0 0 0 0 0 <t< td=""><td>DЕРТН (FT)</td><td>SOIL SYMBOL</td><td>WELL</td><td>Qd</td><td>SAMPLES</td><td>SAMPLE DEPTH</td><td>DESCRIPTION INTERVAL</td><td>Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations</td><td></td><td>DEPTH (FT</td></t<>	DЕРТН (FT)	SOIL SYMBOL	WELL	Qd	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations		DEPTH (FT
				0 0	X			CLAY, silty, light red with gray mottling, dry, crumbles to the touch, non plastic, no odor		40
50 2 0 50 CLAY, red with gray motiles, dry, extremely stiff, high plasticity, no odor 50 56 55 55 55 55 55 60 60 60 60 60 60 60 60 60 60 70 60 60 60 60 70 70 70 70 70 75 60 60 70 70 80 60 60 60 60 75 60 60 60 60 76 76 70 70 70 76 60 60 60 60 76 60 60 60 60 77 70 70 70 70 80 60 60 60 60 80 60 60 60 60 80 60 60 60 60 80 60 60 60 60 70 70 70 7	45			0 0 0			49	- wet to saturated		45
55 56 50 50 50 60 60 60 60 60 60 60 60 60 6	50				\uparrow		1	CLAY, red with gray mottles, dry, extremely stiff, high plasticity, no odor		50
60 60 60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70										
60 60 60 60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	55									55
65 70 70 75 80 REMARKS:										
65 70 70 75 80 REMARKS:										
65 70 70 75 80 REMARKS:										-
70 70 70 70 70 70 70 70 70 70 70 70 70 7	60									60
70 70 70 70 70 70 70 70 70 70 70 70 70 7										
70 70 70 70 70 70 70 70 70 70 70 70 70 7										-
70 70 70 70 70 70 70 70 70 70 70 70 70 7										1
75 75 80 REMARKS:	65									65
75 75 80 REMARKS:										-
75 75 80 REMARKS:										
75 75 80 REMARKS:										
80 REMARKS:	70									70
80 REMARKS:										
80 REMARKS:						*****				
80 REMARKS:										75
REMARKS:										10
REMARKS:]
REMARKS:										{
REMARKS:	80									80
Α-										

PROJECT: City of Houston	DRILLING COMPANY: Alpine Field Services			
PROJECT NUMBER: 92067647	DRILLER: Jamie Vasquez			
CLIENT: City of Houston	DRILLING METHOD: Hollow Stem Auger (HSA)			
BORING / WELL NUMBER: <u>MW-6</u>	BORE HOLE DIAMETER: 8.25"			
TOTAL DEPTH: <u>50.0'</u>	SCREEN: Diam. <u>2"</u> Length <u>10'</u> Slot Size <u>0.01"</u>			
SURFACE ELEVATION: 45.8	CASING: Diam. <u>2"</u> Length <u>40'</u> Type <u>PVC</u>			
SUPERVISOR: Josh McFarlain	DATE DRILLED: 9-16-06			

~	бL	CTION				NO	DESCRIPTION OF STRATUM	<u>1 of 2</u>
DEPTH (FT)	SOIL SYMBOL	WELL CONSTRUCTION	QL	SAMPLES	SAMPLE DEPTH	DESCRIPTION INTERVAL	Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations	DEPTH (FT)
 5			0 0 0 0				FILL, silt and sand mixed with ash and glass fragments, black to dark brown, non plastic	0 5
.10			0 0 0 0 0					 10
15			0 0 0 0 0					15
20			0 0 0 0	\mathbb{N}				20
25								25
30			0 0 0 0 0			35		30
40 REM	ARK	S:	0 0 0 0 0				CLAY, red with gray mottling, dry, extremely stiff, plastic, no odor	 40
	, ., ., '						Terrac	:on

PROJECT: City of Houston	DRILLING COMPANY: <u>Alpine Field Services</u>			
PROJECT NUMBER: 92067647	DRILLER: Jamie Vasquez			
CLIENT: City of Houston	DRILLING METHOD: Hollow Stem Auger (HSA)			
BORING / WELL NUMBER: MW-6	BORE HOLE DIAMETER: 8.25"			
TOTAL DEPTH: <u>50.0'</u>	SCREEN: Diam. 2" Length 10' Slot Size 0.01"			
SURFACE ELEVATION: 45.8	CASING: Diam. <u>2"</u> Length <u>40'</u> Type <u>PVC</u>			
SUPERVISOR: Josh McFarlain	DATE DRILLED: 9-16-06			

PAGE 2 of 2 WELL CONSTRUCTION DESCRIPTION OF STRATUM DESCRIPTION INTERVAL SOIL SYMBOL **DEPTH (FT)** DEPTH (FT) SAMPLES SAMPLE DEPTH Name (Sym.), Color, Water Content, Plasticity, Density, Gradation, Grain Size, Observations - silty clay seam approximately 1' thick V SAND, silty, red to dark brown, wet to saturated, no odor Terminated boring at 50 ft. below ground surface (bgs) ENVLOG1 067647.GPJ 11/17/06 **REMARKS**: Terracon

January 13, 2009

Pinto East End L.L.C. Ms. Debra Levy c/o Brown McCarrol L.L.P. 1111 Bagby, 47th Floor Houston, Texas 77002

RE: Tract 10 Phase II Subsurface Delineation Investigation East End Tract 10 – 1.49-Acre Tract 1000 Block of North Velasco Street, Houston, Harris County, Texas Envirotest Project Number: HOU 08 1377

Dear Ms. Levy:

Please find enclosed the final report of the Tract 10 Phase II Subsurface Delineation Investigation for the 1.49-acre tract of land located in the 1000 block of North Velasco Street in Houston, Harris County, Texas. This investigation was conducted for Pinto East End LLC and was authorized by Mr. Ernie Cockrell.

Please do not hesitate to call if you have any questions regarding this matter. We appreciate the opportunity to be of service to you.

Sincerely,

Jason A. Binford Vice President of Operations Envirotest, Ltd. By ETI Management, LLC

I that phon

Matthew R. Monroe, M.S. Environmental Project Manager Envirotest, Ltd.

ROBERT P. COPUS Robert P. Copus, P.G Vice President of Operations GEOLOGY NO. 3892 Envirotest, Ltd. By: ETI Management, L.L

- 1 -HOUSTON • CORPUS CHRISTI • BEAUMONT

ENVIROTEST, LTD.

.

2

BORING/WELL LOG: MW-1D

Site: Loca Loga	ect No.: HOU 08 1377 1000 Blk. N. Velasco ation: Houston, TX ged by: M.Monroe ling Co.: MEDI	Date Drilled: 10-8-08 Well Casing Information: Drilling Method: SS/HAS Sampling Method: Grab First Encountered Water: GPS Coordinates	V	Schedule 40 Static W		T
ě	Soil Description	al and a second	Cab Sample	Lithology Well	Construction	Depth
0 	Top 2.5' tan clay/sand and 1/2" gravel. Slightly dry and slig	htly hard. No odors.	3,1			-2
-2	Black ash/gravel/glass. Dry and slightly hard. No odors.	50	3.4			4
-6-	No recovery. Very hard drilling.	0	-			-6
-8-			-			-8 - -10
-12 —	Black ash/glass/gravel. Slightly moist and slightly hard. O	il/petroleum odor. 90	4.2			-12
-14 —	Black/brown ash with some clay/glass/metal. Slightly mois	st and slightly hard.				-14
-16 — -18 —	Mild petroleum odor.	90	2,3			- 16 - 18
-20 —	Black/tan/brown ash/rusty metal and glass. Slightly moist Mild petroleum odor.	and slightly soft.	1.4			- 20
-22 —		60	1.7			-22
-24 —			11./	14		-24

Do not use well log separate from the associated report.

ENVIROTEST, LTD.

•

BORING/WELL LOG: MW-1D					
Project:Tract 10 DelineationDate Drilled: 10-8Project No.:HOU 08 1377Well Casing InfoSite:1000 Blk. N. VelascoDrilling Method:Location:Houston, TXSampling Method:Logged by:M.MonroeFirst EncounteredDrilling Co.:MEDIFirst Encountered	rmation: SS/HAS d: Grab d Water:	5		e 40 PVC ic Water:	Ŧ
Driller: Shawn/Pat GPS Coordinates	5				
Soil Description	\$ Record	Plus Sample	Littology	Well Construction	Depth
-24	11	1	~~~		24
-26 Black ash/glass/fill/brick/rusty metal. Moist to slightly wet and slightly soft. Mild petroleum odor.		1.6			-26
-28 -	80	1.9	*****		-28 -30
 -30 Tan sand mixed with ash/glass. Moist to slightly wet and soft. Mild petroleum odor. -32 		2.0	****		- 32
-34 - Tan/brown fine/medium sand. Moist to slightly wet and soft. Mild petroleum odor.	50	1.9			- 34
Tan sand. Saturated and soft.	Y		4		-
-36 — Gray and red clay, very hard and slightly moist. No odors.		1.9			- 36
-38 -	100	1.7			- 38 - 40
 -40 — Orange/gray clay to silty clay. CaCO3 middle half. Slightly moist. Slightly han to slightly soft. No odors. -42 — 	rd				-40
-44 – Silty sand. Saturated. No odors.	100		//		- 44
-46 - Sand. Saturated and soft. No odors.					- - 46
-48 Red clay. Hard and slightly dry.	80				48

1

Do not use well log separate from the associated report.

ENVIROTEST, LTD.

•

BORING/WELL LOG: MW-1D	
Project:Tract 10 DelineationProject No.:HOU 08 1377Site:1000 Blk. N. VelascoLocation:Houston, TXLogged by:M.MonroeDrilling Co.:MEDIDriller:Shawn/Pat	Date Drilled: 10-8-08 Well Casing Information: 2-inch Schedule 40 PVC Drilling Method: SS/HAS Sampling Method: Grab First Encountered Water: ☑ Static Water: ☑ GPS Coordinates
Soil Description	Providence of the second of th
-48 -50 Red silty clay to clayey silt. Saturated and soft. -52 -54 -56 Red silty clay to clayey silt. Saturated and soft. Increased -58 -60	48 50 -52 -52 -54

Attachment 3_____

Water Well Report

TEXAS WATER WELL REPORT

Project Property:

Project No: Order No: Requested by: Date Completed: Former City of Houston Velasco Incinerator Site 0 North Velasco Street Houston TX 12022-0001 24012600065 SKA Consulting, L.P. January 29, 2024

Table of Contents

Table of Contents	2
Executive Summary	3
Executive Summary: Report Summary	4
Executive Summary: Site Report Summary - Project Property	5
Executive Summary: Site Report Summary - Surrounding Properties	6
Мар	7
Aerial	10
Detail Report	12
Appendix: Database Descriptions	27
Definitions	29

Notice: IMPORTANT LIMITATIONS and YOUR LIABILITY

Reliance on information in Report: This report DOES NOT replace a full Phase I Environmental Site Assessment but is solely intended to be used as database review of environmental records.

License for use of information in Report: No page of this report can be used without this cover page, this notice and the project property identifier. The information in Report(s) may not be modified or re-sold.

Your Liability for misuse: Using this Service and/or its reports in a manner contrary to this Notice or your agreement will be in breach of copyright and contract and ERIS may obtain damages for such mis-use, including damages caused to third parties, and gives ERIS the right to terminate your account, rescind your license to any previous reports and to bar you from future use of the Service.

No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Inc. ("ERIS") using various sources of information, including information provided by Federal and State government departments. The report applies only to the address and up to the date specified on the cover of this report, and any alterations or deviation from this description will require a new report. This report and the data contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein and does not constitute a legal opinion nor medical advice. Although ERIS has endeavored to present you with information that is accurate, ERIS disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Trademark and Copyright: You may not use the ERIS trademarks or attribute any work to ERIS other than as outlined above. This Service and Report (s) are protected by copyright owned by ERIS Information Inc. Copyright in data used in the Service or Report(s) (the "Data") is owned by ERIS or its licensors. The Service, Report(s) and Data may not be copied or reproduced in whole or in any substantial part without prior written consent of ERIS.

Executive Summary

Property Information:

Project Prope	erty:	Former City of Houston Velasco Incinerator Site 0 North Velasco Street Houston TX
Project No:		12022-0001
Coordinates:		
	Latitude:	29.75990919
	Longitude:	-95.3356565
	UTM Northing:	3,294,467.50
	UTM Easting:	274, 159. 10
	UTM Zone:	15R
	Target Property Geometry:	POLYGON
County/Parish	Covered:	Harris (TX)
Zipcode(s) Co	vered:	Houston TX: 77002, 77003, 77009, 77011, 77020, 77023, 77026
State(s) Cover	red:	TX

Executive Summary: Report Summary

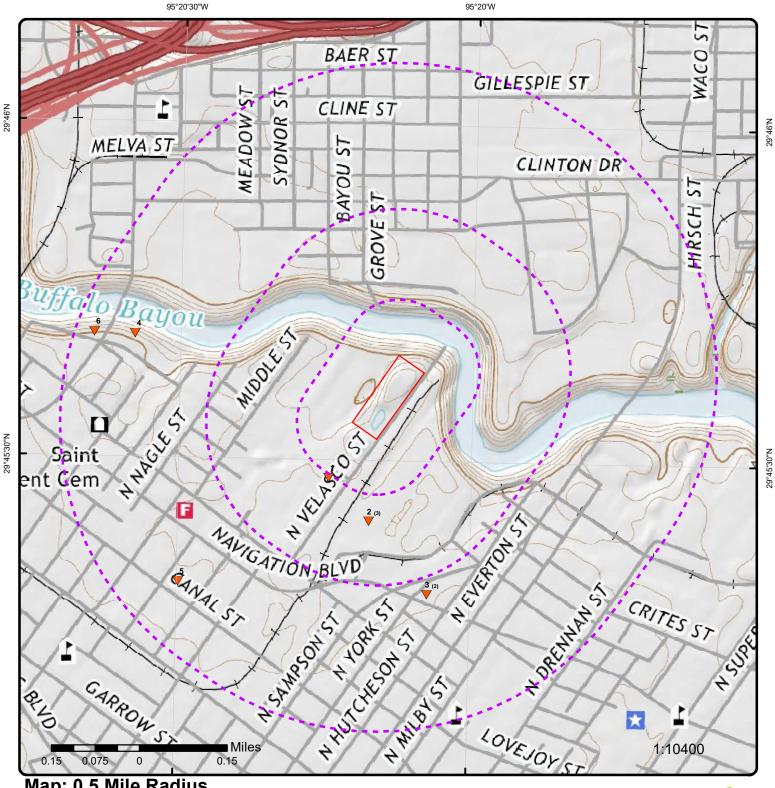
Database	Searched	Project Property	Within 0.50mi	Total
Federal				
FED USGS	Y	0	0	0
State				
TCEQ WELL LOGS	Y	0	1	1
SDRW WELLS	Y	0	0	0
GWDB	Y	0	6	6
WW FORT BEND	Y	0	0	0
WW HIGH PLAINS	Y	0	0	0
WW HARRIS GAL	Y	0	2	2
WUD	Y	0	0	0

Total:

9 9

0

* PO – Property Only


Executive Summary: Site Report Summary - Project Property

Мар	DB	Company/Site Name	Address	Direction	Distance	Page
Key					(mi/ft)	Number

No records found in the selected databases for the project property.

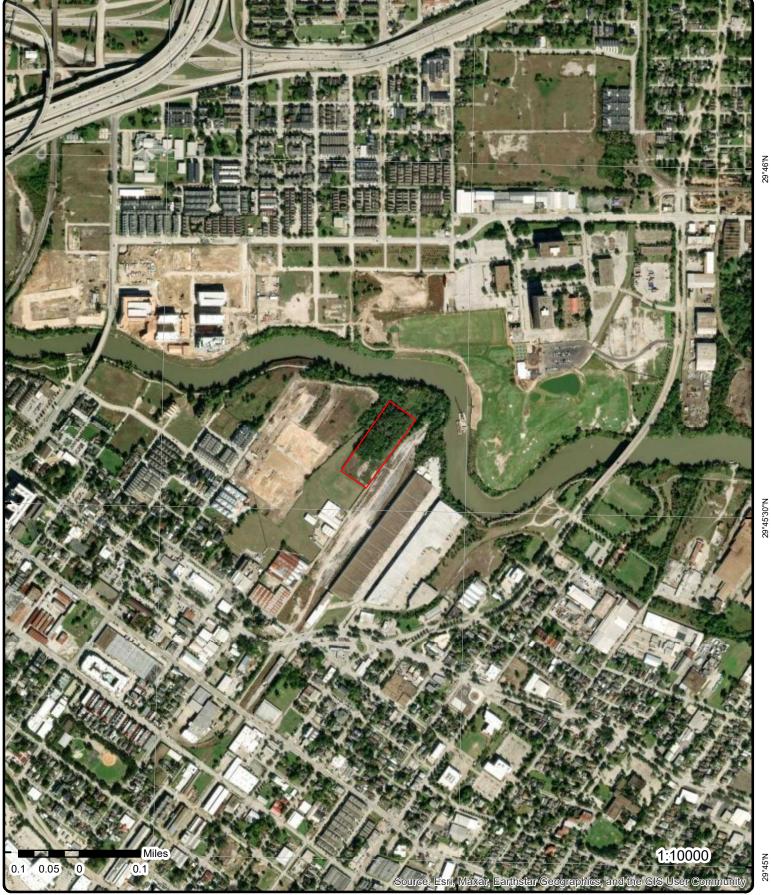
Executive Summary: Site Report Summary - Surrounding Properties

Мар Кеу	DB	Company/Site Name	Address	Direction	Distance (mi/ft)	Page Number
<u>1</u>	GWDB	Lead Products Co.	тх	SW	0.10 / 533.34	<u>12</u>
			State Well No Owner Name: 65147	762 Lead Produ	ucts Co.	
<u>2</u>	GWDB	Houston Packing co	ТХ	S	0.14 / 746.37	<u>14</u>
			State Well No Owner Name: 65147	755 Houston Pa	acking co	
<u>2</u>	GWDB	Houston Packing Co. Well #3	тх	S	0.14 / 746.37	<u>16</u>
			State Well No Owner Name: 65147	756 Houston Pa	acking Co. Well #3	
<u>2</u>	GWDB	Houston Packing Co. Well #4	ТХ	S	0.14 / 746.37	<u>18</u>
			State Well No Owner Name: 65147	758 Houston Pa	acking Co. Well #4	
<u>3</u>	GWDB	Trinity Portland Cement Co.	ТХ	SSE	0.28 / 1,474.67	<u>20</u>
			State Well No Owner Name: 65147	705 Trinity Port	land Cement Co.	
<u>3</u>	WW HARRIS GAL	GENERAL PORTLAND, INC.	тх	SSE	0.28 / 1,474.67	<u>21</u>
			Well ID: 1576			
<u>4</u>	WW HARRIS GAL	HOUSTON SHELL & CONCRETE	ТХ	WNW	0.40 / 2,119.84	<u>22</u>
			Well ID: 2843			
<u>5</u>	TCEQ WELL LOGS	FELIX MORALES	тх	SW	0.40 / 2,128.58	<u>23</u>
			Grid No Owners Name: 65-22-2D	FELIX MORAL	ES	
<u>6</u>	GWDB	Zero Ice Co.	TX State Wall No. / Owner Name: 651/1	W	0.47 / 2,469.57	<u>25</u>
			State Well No Owner Name: 65147		J.	

Map: 0.5 Mile Radius Order Number: 24012600065 Address: 0 North Velasco Street, Houston, TX

29°45'30"N

Plotted Water Wells



ERIS

95°20'30"W

95°20'W

29°45'N

ERIS

Order Number: 24012600065

Address: 0 North Velasco Street, Houston, TX

Detail Report

Map Key	Number of Records	Direction	Distance (mi/ft)	Site	DB
1	1 of 1	SW	0.10/	Lead Products Co.	GWDB
			533.34	тх	
Well Rep Tr	ack No:				
State Well N	lo:	6514762			
Owner Nam	e:	Lead Products	Co.		
Drilling Star	rt Dt:				
Drilling Mor	nth:				
Drilling Day	2				
Drilling Yea	r:	1953			
Well Depth:		258			
Well Usage:		Unused			
Water Level	Status:				
Latitude:		29.7575010			
Longitude:		-95.3377780			
Data Source	ə:	Groundwater D	Database (GWDE) Reports; GIS shapefile of GWDB well locations	
Well Info Re	eport:	https://www3.tv	wdb.texas.gov/ap	ps/waterdatainteractive//GetReports.aspx?Num=651476	62&Type=GWDB
Document L	.ink:	https://www3.tv	wdb.texas.gov/ap	ps/waterdatainteractive//GetScannedImage.aspx?Num=	6514762&Cnty=Harris

ap Key	Number of Records	Direction	Distance (mi/ft)	Site				DB
				ater Develop Vell Schedul	oment Board e			
Stat	e Well Number 6	514762	Previous Well	Number		County	Harris 201	
	r Basin 10 San J				Longitude 952016		Coords 3	
0	er's Well No.							
0.41	Owner	Location	Drille					
		oducis Co.	H.L. Ja					
Add	Iress				Tenant/Oper.			4
Dat	e Drilled / /1953	B Depth 258	Source of	Depth	Altitude 40	Source of A	Alt.	
					Well Type W	User		
WE CON	LL ASTRUCTION	Const- Method		Casing Mater	ial Blank		Casing or Blank Pip	ie (C)
		Completion		Screen Mater	i jal Blank		Well Screen or Slott (S) or Open Hole (O Cemented from))
LIF	FDATA - Pum	p Mfr	Type - NON	E	No. Stages			
B	owls Diam -	in. Setting -		ft. Colu	mn Diam	in.		
N	lotor Mfr	Fuel or Pow	er - blank		Horsepower -			
Y	TELD Flow-	GPM Pump	GPM M	leas.,Rept.,Es	t Date-			
WA	TER USE	Primary - UNUSED	Secondary -	blank	Tertiary - blank			
оті	IER DATA AVAI	LABLE Water Levels -	M Quality -	Y Logs -	Other Data -			
WA'		I measurement 1955 -110						
Re	corded By		Date	e Record Colle	ected or Updated - //			
Re	porting Agency							
Sci	1ARKS - reen from 233 ot 25 Id 100 gpm when o							
077	1994 - C							
						Aqu	ifer - 112CHCTL II	D - 15
							COT JIFER,LOWER	
							W.D.M.M.	

Tuesday, August 30, 2005

13

Мар Кеу	Number of Records	Direction	Distance (mi/ft)	Site	DB
2	1 of 3	s	0.14 /	Houston Packing co	GWDB
			746.37	тх	
Well Rep Tr	ack No:				
State Well N	lo:	6514755			
Owner Nam	e:	Houston Packi	ng co		
Drilling Star	rt Dt:				
Drilling Mor	nth:				
Drilling Day	:				
Drilling Yea	r:	1907			
Well Depth:		1616			
Well Usage:		Unused			
Water Level	Status:				
Latitude:		29.7572230			
Longitude:		-95.3363890			
Data Source	ə:	Groundwater D	Database (GWDE) Reports; GIS shapefile of GWDB well location	S
Well Info Re	eport:	https://www3.tv	wdb.texas.gov/ap	ps/waterdatainteractive//GetReports.aspx?Num	e6514755&Type=GWDB
Document L	.ink:	https://www3.tv	wdb.texas.gov/ap	ps/waterdatainteractive//GetScannedImage.asp	x?Num=6514755&Cnty=Harris

	Number of Records	Direction	Distance Site (mi/ft)		
			Texas Water Devel Well Sched		
Stat	te Well Number	6514755	Previous Well Number		County Harris 201
	er Basin 10 San J			Longitude 952011	Source of Coords 3
Ow	ner's Well No.	Location	1		
	Owner		Driller G.C. Warniecke		
Ad	dress			Tenant/Oper.	
Da	te Drilled / /190	7 Depth 1616	Source of Depth	Altitude 40	Source of Alt.
100				Well Type W	
	ILL NSTRUCTION	Const- Method	Cas Mai		Casing or Blank Pipe (C)
		Completion	Sere Mat	een Blank	Well Screen or Slotted Zone (S) or Open Hole (O) Cemented fromto
LIF	T DATA - Pum	np Mfr	Type - NONE	No. Stages	
		in. Setting		olumn Diam	_ in.
1	Motor Mfr	Fuel or Po	ower - blank	Horsepower -	
	YIELD Flow-	GPM Pump	GPM Meas.,Rept.,	Est Date-	1 (1)
WA	TER USE	Primary - UNUSED	Secondary - blank	Tertiary - blank	
от	HER DATA AVA	ILABLE Water Level	s • M Quality • Y Logs	- Other Data -	
	TER LEVELS	1 measurement 1938	s - M Quality - Y Logs	- Other Data -	
WA	TER LEVELS	1 measurement 1938 -40			
WA	TER LEVELS	1 measurement 1938 -40	s - M Quality - Y Logs Date Record C		
WA Ri RE So Ré	TER LEVELS	1 measurement 1938 -40 1616 ft. spm with 60 ft			
WA Ri RE So Ré	ecorded By eporting Agency MARKS - creen from 1536 to eported yield 258 g	1 measurement 1938 -40 1616 ft. spm with 60 ft			
WA Ri RE So Ré	ecorded By eporting Agency MARKS - creen from 1536 to eported yield 258 g	1 measurement 1938 -40 1616 ft. spm with 60 ft			Aquifer - 121EVGL ID - 15
WA Ri RE So Ré	ecorded By eporting Agency MARKS - creen from 1536 to eported yield 258 g	1 measurement 1938 -40 1616 ft. spm with 60 ft			Aquifer - 121EVGL ID - 15 EVANGELINE AQUIFER

Map Key	Number of Records	Direction	Distance (mi/ft)	Site	DB
2	2 of 3 S	S	0.14 / 746.37	Houston Packing Co. Well #3	GWDB
			/40.37	тх	
Well Rep Tr	ack No:				
State Well N	lo:	6514756			
Owner Nam	e:	Houston Packi	ng Co. Well #3		
Drilling Star	rt Dt:				
Drilling Mon	nth:				
Drilling Day	:				
Drilling Yea	r:	1930			
Well Depth:		619			
Well Usage:	,	Industrial			
Water Level	Status:				
Latitude:		29.7580560			
Longitude:		-95.3366670			
Data Source	ə:	Groundwater E	Database (GWDE	B) Reports; GIS shapefile of GWDB well locations	
Well Info Re	eport:	https://www3.tv	wdb.texas.gov/ap	pps/waterdatainteractive//GetReports.aspx?Num=651475	6&Type=GWDB
Document L	.ink:	https://www3.tv	wdb.texas.gov/ap	pps/waterdatainteractive//GetScannedImage.aspx?Num=	6514756&Cnty=Harris

Texas Water Development Board Well Schedule

State Well Number 6514756	Previous Well Number	County H	larris 201
River Basin 10 San Jacinto River Zone 1	Latitude 294529	Longitude 952012 Source of	Coords 2
Owner's Well No Location			
Owner Houston Packing Co. Well #3	Driller Layne Texas Co.		
Address		Tenant/Oper.	
Date Drilled / /1930 Depth 619	Source of Depth	Altitude 40 Source of A	lt.
		Well Type W User	
WELL Const- CONSTRUCTION Method	Casing Material		
Completion	Screen Material		Casing or Blank Pipe (C) Well Screen or Slotted Zone (S) or Open Hole (O) Cemented fromto
LIFT DATA - Pump Mfr	Type - TURBINE PUMP	No. Stages	
Bowls Diam - in. Setting -	ft. Column	ı Diam in.	
Motor Mfr Fuel or Pow	er - ELECTRIC MOTOR	Horsepower -	
YIELD Flow- GPM Pump	GPM Meas.,Rept.,Est	Date-	
WATER USE Primary - INDUSTRIAL	Secondary -	Tertiary -	
OTHER DATA AVAILABLE Water Levels -	M Quality - N Logs -	Other Data -	
WATER LEVELS i measurement i941 -102			
Recorded By	Date Record Collect	ed or Updated - 09/30/2002	
Reporting Agency 01			
REMARKS - TWDB R178: 101 ft. of screen between 235 and 611 ft. Yield: 200 gpm with 22 ft. drawdown on 7/13/41			
		Aqu	ifer - 112CHCTL ID - 15
		CHIC	COT IIFER,LOWER
Tuesday, August 30, 2005			Well Number - 6514756

DB

erisinfo.com | Environmental Risk Information Services

Map Key	Number of Records	Direction	Distance (mi/ft)	Site	DB
2 :	3 of 3 S	S	0.14 / 746.37	Houston Packing Co. Well #4	GWDB
			740.37	тх	
Well Rep Tra	ack No:				
State Well N	lo:	6514758			
Owner Nam	e:	Houston Packi	ng Co. Well #4		
Drilling Star	rt Dt:				
Drilling Mon	nth:				
Drilling Day	:				
Drilling Yea	r:	1936			
Well Depth:		424			
Well Usage:	•	Industrial			
Water Level	Status:				
Latitude:		29.7583340			
Longitude:		-95.3347220			
Data Source) :	Groundwater E	Database (GWDE	B) Reports; GIS shapefile of GWDB well locations	
Well Info Re	eport:			ops/waterdatainteractive//GetReports.aspx?Num=651475	
Document L	.ink:	https://www3.tv	wdb.texas.gov/ap	ps/waterdatainteractive//GetScannedImage.aspx?Num=	6514758&Cnty=Harris

	Number of Records	Direction	Distance (mi/ft)	Site				
				er Developme Il Schedule	ent Board			
State	Well Number 65	514758	Previous Well N	umber		County F	larris 201	
	Basin 10 San Ja				Longitude 952005	Source of		
Own	er's Well No.	n - statistic - statistic						
0	Owner	Location	Driller				· · · · · · · · · · · · · · · · · · ·	
		Packing Co.	Layne Tex	as Co.				
Add	ress				Tenant/Oper.	-		
Date	e Drilled / /1936	Depth 424	Source of De	pth	Altitude 40	Source of A	.Ht.	
					Well Type	w User		
WEL	L	Court		Conting				
	STRUCTION	Const- Method		Casing Material			6 ·	D (C)
		Completion		Screen Material			Casing or Blank Well Screen or S (S) or Open Hole Cemented from	lotted Zone (O)
LIFT	DATA - Pump	Mfr	Type - TURBE	NE PUMP	No. Stages		241	
	owls Diam -		. <u>n</u> .		Diam			
		Fuel or Po						
N	lotor Mfr	Fuel of Fo	ver - ELECTRIC MC	IOK	norsepower -			
Y	IELD Flow-	GPM Pump	GPM Mea	as.,Rept.,Est	Date-			
WAI	TER USE F	rimary - INDUSTRIAL	Secondary -		Tertiary -			
			2					
		Primary - INDUSTRIAL LABLE Water Levels	2	Logs -	Tertiary - Other Data -			
отн	ER DATA AVAII		2	Logs -				
отн	ER DATA AVAII TER LEVELS 1 1	RABLE Water Levels measurement 936	2	Logs -				
отн	ER DATA AVAII TER LEVELS 1 1	RABLE Water Levels	2	Logs -				
отн Wat	IER DATA AVAH IER LEVELS 1 1	RABLE Water Levels measurement 936	M Quality N		Other Data -	W2002		
OTH WAT Rec	IER DATA AVAH IER LEVELS 1 1	LABLE Water Levels measurement 936 71	• M Quality • N	Record Collecto	Other Data -	W2002		
OTH WAI Rec Rep	ER DATA AVAII	LABLE Water Levels measurement 936 71	• M Quality • N		Other Data -	W2002		
OTH WAI Rec Rep REM TW	IER DATA AVAII	LABLE Water Levels	• M Quality • N	Record Collecto	Other Data -	W2002		
OTH WAT Rec Rep REM TW bety	IER DATA AVAII	LABLE Water Levels	• M Quality • N	Record Collecto	Other Data -	0/2002		
OTH WAT Rec Rep REM TW bety Yici	IER DATA AVAII IER LEVELS 1 iorded By porting Agency 01 IARKS - IDB R178: 68 ft. o ween 339 and 420 ft	LABLE Water Levels - measurement 936 71 f screen ft. 43 ft.	• M Quality • N	Record Collecto	Other Data -	w2002		
OTH WAT Rec Rep REM TW bety Yici	IER DATA AVAII IER LEVELS 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LABLE Water Levels - measurement 936 71 f screen ft. 43 ft.	• M Quality • N	Record Collecto	Other Data -	W2002		
OTH WAT Rec Rep REM TW bety Yici	IER DATA AVAII IER LEVELS 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LABLE Water Levels - measurement 936 71 f screen ft. 43 ft.	• M Quality • N	Record Collecto	Other Data -		ifer - 112CHCTL	ID- 15
OTH WAT Rec Rep REM TW bety Yici	IER DATA AVAII IER LEVELS 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LABLE Water Levels - measurement 936 71 f screen ft. 43 ft.	• M Quality • N	Record Collecto	Other Data -	А qu Снис	от	ID-1 5
OTH WAT Rec Rep REM TW bety Yici	IER DATA AVAII IER LEVELS 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LABLE Water Levels - measurement 936 71 f screen ft. 43 ft.	• M Quality • N	Record Collecto	Other Data -	А qu Снис		

19

Map Key	Number of Records	Direction	Distance (mi/ft)	Site	DB
3 1	1 of 2 SSE		0.28/	Trinity Portland Cement Co.	GWDB
			1,474.67	тх	
Well Rep Tra	ack No:				
State Well N	lo:	6514705			
Owner Nam	e:	Trinity Portland	d Cement Co.		
Drilling Star	rt Dt:				
Drilling Mon					
Drilling Day					
Drilling Yea	r:	1951			
Well Depth:		612			
Well Usage:		Industrial			
Water Level	Status:				
Latitude:		29.7550010			
Longitude:		-95.3344450			
Data Source	-		,	B) Reports; GIS shapefile of GWDB well locations	
Well Info Re			0 1	ops/waterdatainteractive//GetReports.aspx?Num=651/	
Document L	.ink:	https://www3.t	wdb.texas.gov/ap	ps/waterdatainteractive//GetScannedImage.aspx?Nu	m=6514705&Cnty=Harris

Мар Кеу	Numbe Record		Direction	Distance (mi/ft)	Site		DB
3	2 of 2		SSE	0.28 / 1,474.67	GENERAL PORTLAND, I TX	WW HARRIS GAL	
Well ID: Aggre Lead Permit No: Permit Start Permit End Well Status: Regulatory Owner Nam Billing Cont Billing Addr Billing Addr Billing Addr Billing State Billing Zip: Correspond Provision: Water Usag	t Date: Dt: Aarea: e: tact: ress: ress 2: e: lence:	1576 1576 W1978 1/14/19 1/31/19 P - Plug 2	79		Diameter (inches): Year Drilled: Depth Drilled: Depth frm Surf(ft): County: Latitude: Longitude:	14 1951 612 500 H 29.755277 -95.334722	

Мар Кеу	Numbe Record		Direction	Distance (mi/ft)	Site		DB	
4	1 of 1		WNW	0.40 / 2,119.84	HOUSTON SHELL & COI	NCRETE	WW HARRIS GAL	
Well ID: Aggre Lead Permit No: Permit Start Permit End Well Status: Regulatory Owner Nam Billing Cont Billing Addr Billing Addr Billing City: Billing State Billing Zip: Correspond Provision: Water Usage	t Date: Dt: Aarea: e: tact: ress: ress 2: e: lence:	2843 2843 W1978 6/1/197 5/31/19 P - Plug 2	79 gged	ELL & CONCRET LL	Diameter (inches): Year Drilled: Depth Drilled: Depth frm Surf(ft): County: Latitude: Longitude:	6 1962 640 600 H 29.762222 -95.343333		

Map Key	Number of Records	Direction	Distance (mi/ft)	Site	DB
5	1 of 1	SW	0.40 / 2,128.58	FELIX MORALES	TCEQ
			2,120.00	тх	WELL LOGS
Grid No:		65-22-2D			
Date Drilled	l:	04/14/1970			
Owners Na	me:	FELIX MORAL	.ES		
County:		HARRIS			
Water Usag	e:	DOMESTIC			
Static Level		115			
Depth Drille	ed:	186			
Latitude:		29.755245			
Longitude:		-95.341532			

Send original copy by certified mail to the Texas Water Development P. O. Box 12386 Austin, Texas 78711 State of Texas No. 65-22-20 Well Locat Board 70 40 Receiv WATER WELL REPORT 1) OWNER: 2901 stow Person having well drill Landowner 2) LOCATION OF WELL: direction for aton miles in (N.E., S.W., etc.) Give legal location with distances Locate by sketch map showing landmarks, roads, creeks, hiway number, etc.* adjacent sections or survey lines. Labor_____ Z. Block North -64-18 mapo on - 60 Abstract No. A (NW's NE's SW's SE's) of Section_ (Use reverse side if necessary) 4)PROPOSED USE (Check): Domestic Industrial 5) TYPE OF WELL (Check): Rotary _____ Driven 3) TYPE OF WORK (Check): New Well - Deepening Municipal Dug Other Cable Jetted Bored Irrigation Test Well Reconditioning Plugging 4/10 6)WELL LOC: 186 612 186 ft. Date drilled Depth of completed wel Diameter of hole Depth drilled ft. 0 60.00 d level. All measurements made fr Casing: Type: 01d and From New Steel Plastic Other (ft.) (ft.) formation material 131 ft. to [7] 0 5 Cemented fro 5 60 Diame (inch Setting 73 60 4/11 0 SCH 73 163 163 186 SCREEN: Type Plastie unapped Perforated -Slotted Setting From (ft.) To (ft.) (inches) Size 12 CA. 2/2 176 186 (Use reverse side if necessary) COMPLETION (Check): 11) WELL TESTS: (No) If yes, by whom? Straight wall Was a pump test made? Gravel packed Other Yes Under reamed Open Hole Yield: gpm with ft, drawdown after hrs. WATER LEVEL Static level 115 ft. below land surface Date 414 Bailer test gpm with ft, drawdown after hrs. Artesian pressure_____lbs. per square inch. Date Artesian flow gpm Temperature of water Depth to pump bowls, cylinder, jet, etc., 157 ft. 12) WATER QUALITY: Was a chemical analysis made? below land surface. 00 Yes Did any strata contain undesirable water? Yes No depth of strats this well was drilled by herein are true to the best of my knowledge WE MILLARD 16 Water Well Drillers Registration No. 1AS HOUSTON 1.0 ADDRESS 1240 RUICE (Stened) Please attach electric log, chemical analysis, and other pertinent information, if available. *Additional instructions on reverse side. TN652220004 國際同時相關總法。 TWDBE-CW-53

Map Key	Number of Records	Direction	Distance (mi/ft)	Site	DB
6 1 of 1	1 of 1	W	0.47 /	Zero Ice Co.	GWDB
			2,469.57	тх	
Well Rep Tr	ack No:				
State Well N		6514754			
Owner Nam	e:	Zero Ice Co.			
Drilling Star	rt Dt:				
Drilling Mor	nth:				
Drilling Day	:				
Drilling Yea	r:	1923			
Well Depth:		881			
Well Usage:	:	Unused			
Water Level	Status:				
Latitude:		29.7608340			
Longitude:		-95.3450000			
Data Source	e:	Groundwater E	Database (GWDE) Reports; GIS shapefile of GWDB well locations	
Well Info Re			0 1	ps/waterdatainteractive//GetReports.aspx?Num=6514	
Document L	Link:	https://www3.tv	wdb.texas.gov/ap	ps/waterdatainteractive//GetScannedImage.aspx?Nu	m=6514754&Cnty=Harris

Key	Number of Records	Dire		Distance (mi/ft)	Site				
					Vater Developm	ent Board			
					Well Schedule				
Stat	te Well Number	6514754		Previous We	ll Number		County		
Riv	ver Basin 10 San	Jacinto River	Zone 1	Latitude	e 294539	Longitude 952042	Source of	f Coords 2	
Ow	ner's Well No.		Location						
	Owne Zero k			Drill Layne					
Ad	ldress		a a			Tenant/Oper.			
Da	ate Drilled /./19	23 De	pth 881	Source o	f Depth	Altitude 30	Source of	Alt.	
						Well Type W	User		
	ELL INSTRUCTION	Const- Method			Casing Material			C i DI	1.12. (0)
		Completi	on		Screen Material			Casing or Blan Well Screen or (S) or Open Ho Cemented from	Slotted Zoo le (O)
LIF	FT DATA - Pur	mp Mfr		Type - NO	NE	No. Stages			
1	FT DATA - Pur Bowls Diam - Motor Mfr YIELD Flow-	in.	Setting - Fuel or Pow Pump		ft. Column	No. Stages 1 Diam Horsepower - Date-	in.		
1	Bowls Diam - Motor Mfr YIELD Flow-	in. GPM	Setting - Fuel or Pow Pump	rer - GPM	ft. Column Meas.,Rept.,Est	n Diam Horsepower - Date-	in.		
1 1 	Bowls Diam - Motor Mfr	in. GPM Primary - UN	Setting - Fuel or Pow Pump	GPM Secondary	ft. Column Meas.,Rept.,Est -	n Diam Horsepower -	in.		
u WA OT	Bowls Diam - Motor Mfr YIELD Flow- ATER USE	in. GPM Primary - UN AILABLE V	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary	ft. Column Meas.,Rept.,Est -	n Diam Horsepower - Date- Tertiary -	in.		
u WA OT WA	Bowls Diam - Motor Mfr YIELD Flow- ATER USE THER DATA AVA	in. GPM Primary - UN AILABLE V I measurement 1938 -56	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary M Quality -	ft. Column Meas.,Rept.,Est - - N Logs -	h Diam Horsepower - Date- Tertiary - Other Data -			
U WA OT WA	Bowls Diam - Motor Mfr YIELD Flow- ATER USE THER DATA AVA ATER LEVELS	in. GPM Primary - UN AILABLE V I measurement 1938 -56	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary M Quality -	ft. Column Meas.,Rept.,Est - - N Logs -	n Diam Horsepower - Date- Tertiary -			
I WA OT WA Rd Rd RE TV be Yi	Bowls Diam - Motor Mfr YIELD Flow- ATER USE THER DATA AVA	in. GPM Primary - UN AILABLE V I measurement 1938 -56 01 ft. of screen 4 ft. h 50 ft.	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary M Quality -	ft. Column Meas.,Rept.,Est - - N Logs -	h Diam Horsepower - Date- Tertiary - Other Data -			
I WA OT WA Rd Rd RE TV be Yi	Bowls Diam - Motor Mfr YIELD Flow- ATER USE THER DATA AVA ATER LEVELS Recorded By Reporting Agency CMARKS - WDB R178: 180 fetween 150 and 69 Tield: 375 gpm wit	in. GPM Primary - UN AILABLE V I measurement 1938 -56 01 ft. of screen 4 ft. h 50 ft.	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary M Quality -	ft. Column Meas.,Rept.,Est - - N Logs -	h Diam Horsepower - Date- Tertiary - Other Data -	2002		
I WA OT WA Rd Rd RE TV be Yi	Bowls Diam - Motor Mfr YIELD Flow- ATER USE THER DATA AVA ATER LEVELS Recorded By Reporting Agency CMARKS - WDB R178: 180 fetween 150 and 69 Tield: 375 gpm wit	in. GPM Primary - UN AILABLE V I measurement 1938 -56 01 ft. of screen 4 ft. h 50 ft.	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary M Quality -	ft. Column Meas.,Rept.,Est - - N Logs -	h Diam Horsepower - Date- Tertiary - Other Data -	2002 Aq EV/	uifer - 121EVGL ANGELINE UIFER	ID - 15
WA WA OT WA RC RC RC RC TV be Yi dr	Bowls Diam - Motor Mfr YIELD Flow- ATER USE THER DATA AVA ATER LEVELS Recorded By Reporting Agency CMARKS - WDB R178: 180 fetween 150 and 69 Tield: 375 gpm wit	in. GPM Primary - UN AILABLE V I measurement 1938 -56 01 ft. of screen 4 ft. h 50 ft. 38	Setting - Fuel or Pow Pump USED Vater Levels -	GPM Secondary M Quality -	ft. Column Meas.,Rept.,Est - - N Logs -	h Diam Horsepower - Date- Tertiary - Other Data -	2002 Aq EV/	ANGELINE	

26

Appendix: Database Descriptions

Environmental Risk Information Services (ERIS) can search the following databases. The extent of historical information varies with each database and current information is determined by what is publicly available to ERIS at the time of update.

<u>Federal</u>

Wells from NWIS:

The U.S. Geological Survey's (USGS) National Water Information System (NWIS) is the nation's principal repository of water resources data. The NWIS includes comprehensive information of well-construction details, time-series data for gage height, streamflow, groundwater level, and precipitation and water use data. This select NWIS Wells dataset contains specific Site Types from the overall NWIS Sites data, limited to the following Group Site Types only: Groundwater Group Site Types: Well, Collector or Ranney type well, Hyporheic-zone well, Interconnected Wells, Multiple wells; Spring Group Site Type: Spring; and Other Group Site Types: Aggregate groundwater use, Cistern. Applicable NWIS database information is obtained through the Water Quality Data Portal (WQP). The WQP is a cooperative service sponsored by the USGS, the Environmental Protection Agency (EPA), and the National Water Quality Monitoring Council (NWQMC).

Government Publication Date: Sep 27, 2023

<u>State</u>

Well Log Reports from Plotted Water Wells:

Locations of TCEQ Water Wells as derived from well logs in the Texas Commission on Environmental Quality (TCEQ) Water Well Report Viewer, which includes unnumbered water wells and those plotted to 2.5 minute grid locations (2-3 miles). In this collection of Well Log Reports, locations have been manually verified.

Government Publication Date: Jul 26, 2022

Select Wells from SDR:

Locations of wells from the Submitted Drillers Report (SDR) Database with select proposed usage: Domestic, Fracking Supply, Industrial, Irrigation, Other, Public Supply, Rig Supply, Stock, Unknown. SDR is populated from the online Texas Well Report Submission and Retrieval System (TWRSRS), a cooperative Texas Department of Licensing and Regulation (TDLR) and Texas Water Development Board (TWDB) application requiring registered water-well drillers to submit reports. Excludes SDR records with the following proposed usage: Closed-Loop Geothermal, De-watering, Environmental Soil Boring, Extraction, Injection, Monitor, Test Well.

Government Publication Date: Sep 6, 2023

Groundwater Database:

The Texas Water Development Board (TWDB) Groundwater Database (GWDB) contains information on selected water wells, springs, oil/gas tests (that were originally intended to be or were converted to water wells), water levels and water quality. *Government Publication Date: Oct 16, 2023*

Fort Bend Subsidence District Water Wells:

List of water wells in the Fort Bend Subsidence District, boundaries of which are defined as all the territory within Fort Bend County. The Fort Bend Subsidence District was created by the Texas Legislature in 1989 as a conservation and reclamation district to control land subsidence and manage groundwater resources through regulation, conservation, and coordination with suppliers of alternative water sources to assure an adequate quantity and quality of water for the future. The District's purpose is to provide for the regulation of the withdrawal of groundwater within the District to prevent subsidence that contributes to flooding, inundation or overflow of areas within the District, including rising waters resulting from storms or hurricanes. *Government Publication Date: Jul 6, 2023*

High Plains Water Wells:

Inventory of water wells in the High Plains Underground Water Conservation District No. 1 (HPUWCD), which was created in 1951. As a political subdivision of Texas, HPUWCD is charged with protecting, preserving and conserving aquifers within the District's 16-county service area. *Government Publication Date: Apr 17, 2023*

FED USGS

TCEQ WELL LOGS

SDRW WELLS

....

GWDB

WW FORT BEND

WW HIGH PLAINS

Harris Galveston Subsidence District Water Wells:

List of water wells in the Harris-Galveston Subsidence District (HGSD). The HGSD was created by the 64th Texas Legislature as an underground water conservation district in 1975 to provide regulation of groundwater withdrawal to control subsidence. *Government Publication Date: Jul 6, 2023*

Water Utility Database:

The Water Utility Database is defined as a collection of data from Texas Water Districts, Public Drinking Water Systems and Water and Sewer Utilities who submit information to the TCEQ. This database is an integrated database designed and developed to replace over 160 stand alone legacy systems representing over 5 million records of the former Texas Water Commission and the Texas Department of Health. *Government Publication Date: Oct 1, 2020*

WW HARRIS GAL

WUD

Definitions

Database Descriptions: This section provides a detailed explanation for each database including: source, information available, time coverage, and acronyms used. They are listed in alphabetic order.

Detail Report: This is the section of the report which provides the most detail for each individual record. Records are summarized by location, starting with the project property followed by records in closest proximity.

Distance: The distance value is the distance between plotted points, not necessarily the distance between the sites' boundaries. All values are an approximation.

Direction: The direction value is the compass direction of the site in respect to the project property and/or center point of the report.

Executive Summary: This portion of the report is divided into 3 sections:

'Report Summary'- Displays a chart indicating how many records fall on the project property and, within the report search radii.

'Site Report Summary'-Project Property'- This section lists all the records which fall on the project property. For more details, see the 'Detail Report' section.

'Site Report Summary-Surrounding Properties'- This section summarizes all records on adjacent properties, listing them in order of proximity from the project property. For more details, see the 'Detail Report' section.

<u>Map Key:</u> The map key number is assigned according to closest proximity from the project property. Map Key numbers always start at #1. The project property will always have a map key of '1' if records are available. If there is a number in brackets beside the main number, this will indicate the number of records on that specific property. If there is no number in brackets, there is only one record for that property.

The symbol and colour used indicates 'elevation': the red inverted triangle will dictate 'ERIS Sites with Lower Elevation', the yellow triangle will dictate 'ERIS Sites with Higher Elevation' and the orange square will dictate 'ERIS Sites with Same Elevation.'

Attachment 4_____

Telephone/Interview Reports

TELEPHONE REPORT

PROJECT:	Former City of Housto	on Velasco	Incinerator Site	PROJECT NO.:	12022-0001
FROM:	Ryan Rutaivilavan	WITH:	SKA Consulting, L	P. DATE:	2/23/2024
TO:	Carter Simons	WITH:	Property Owner	TIME:	8:24 AM

PHONE: (713) 906-3240

A call was made to Mr. Carter Simons regarding two reported water wells located on Allpro Manufacturing (Lead Products Company, VCP No. 334), which is located southwest of the subject property. Mr. Simons stated that he knew of the existence of the water well by the building and that the well had been capped during VCP remediation activities, and has not been in use in at least 25 years. Mr. Simons also explained that he had no knowledge of there being another water well on the property. Further, he indicated that the property is serviced by the City of Houston municipal water system.

REPORTED BY: Ryan Rutaivilavan

G:\2022\12022-0001\Letters\DWSR

INTERVIEW REPORT

PROJECT:	Former City of Houston	n Velasco	Incinerator Site	PROJECT NO.:	12022-0001
FROM:	Courtney Sims	WITH:	SKA Consulting, L	P. DATE:	2/23/2024
TO:	Wendy Ostera	WITH:	Allpro Manufacturi	ng TIME :	9:13 AM

PHONE: (713) 224-9546

SKA spoke with Ms. Wendy Ostera, an employee of Allpro Manufacturing, regarding two reported water wells located at Allpro Manufacturing (Lead Products Company, VCP No. 334). Ms. Ostera stated that the property is serviced by the City of Houston municipal water system. Further she had no knowledge of any water wells being located at the property with the exception of what Mr. Carter Simons (President of Lead Products Company) had informed her on prior to SKA arriving at the facility to inspect the reported locations of the water wells. She indicated that Mr. Simons told her that a water well was formerly located within the facility, but he did not know about the water well located in the open field southwest of the buildings.

REPORTED BY: Courtney Sims